A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evidence of positively selected G6PD A- allele reduces risk of Plasmodium falciparum infection in African population on Bioko Island. | LitMetric

Background: Glucose-6-phosphate dehydrogenase (G6PD) is an essential enzyme that protects red blood cells from oxidative damage. Although G6PD-deficient alleles appear to confer a protective effect of malaria, the link with clinical protection against Plasmodium infection is conflicting.

Methods: A case-control study was conducted on Bioko Island, Equatorial Guinea and further genotyping analysis used to detect natural selection of the G6PD A- allele.

Results: Our results showed G6PD A- allele could significantly reduce the risk of Plasmodium falciparum infection in male individuals (adjusted odds ratio [AOR], 0.43; 95% confidence interval [CI], 0.20-0.93; p < .05) and homozygous female individuals (AOR, 0.11; 95% CI, 0.01-0.84; p < .05). Additionally, the parasite densities were significantly different in the individuals with different G6PD A- alleles and individual levels of G6PD enzyme activity. The pattern of linkage disequilibrium and results of the long-range haplotype test revealed a strong selective signature in the region encompassing the G6PD A- allele over the past 6,250 years. The network of inferred haplotypes suggested a single origin of the G6PD A- allele in Africans.

Conclusion: Our findings demonstrate that glucose-6-phosphate dehydrogenase (G6PD) A- allele could reduce the risk of P. falciparum infection in the African population and indicate that malaria has a recent positive selection on G6PD A- allele.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7005621PMC
http://dx.doi.org/10.1002/mgg3.1061DOI Listing

Publication Analysis

Top Keywords

g6pd allele
8
risk plasmodium
8
plasmodium falciparum
8
falciparum infection
8
bioko island
8
evidence positively
4
positively selected
4
g6pd
4
selected g6pd
4
allele reduces
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!