High-Performance Perovskite Light-Emitting Diode with Enhanced Operational Stability Using Lithium Halide Passivation.

Angew Chem Int Ed Engl

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China.

Published: March 2020

Defect passivation has been demonstrated to be effective in improving the radiative recombination of charge carriers in perovskites, and consequently, the device performance of the resultant perovskite light-emitting diodes (LEDs). State-of-the-art useful passivation agents in perovskite LEDs are mostly organic chelating molecules that, however, simultaneously sacrifice the charge-transport properties and thermal stability of the resultant perovskite emissive layers, thereby deteriorating performance, and especially the operational stability of the devices. We demonstrate that lithium halides can efficiently passivate the defects generated by halide vacancies and reduce trap state density, thereby suppressing ion migration in perovskite films. Efficient green perovskite LEDs based on all-inorganic CsPbBr perovskite with a peak external quantum efficiency of 16.2 %, as well as a high maximum brightness of 50 270 cd m , are achieved. Moreover, the device shows decent stability even under a brightness of 10  cd m . We highlight the universal applicability of defect passivation using lithium halides, which enabled us to improve the efficiency of blue and red perovskite LEDs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201914000DOI Listing

Publication Analysis

Top Keywords

perovskite leds
12
perovskite light-emitting
8
operational stability
8
defect passivation
8
resultant perovskite
8
lithium halides
8
perovskite
7
high-performance perovskite
4
light-emitting diode
4
diode enhanced
4

Similar Publications

Perovskite nanocrystals (NCs) with their excellent optical and semiconductor properties have emerged as primary candidates for optoelectronic applications. While extensive research has been conducted on the 3D perovskite phase, the zero-dimensional (0D) form of this promising material in the NC format remains elusive. In this paper, a new synthesis strategy is proposed.

View Article and Find Full Text PDF

Metal halide perovskites (MHPs) have been developed rapidly for application in light-emitting diodes (LEDs), lasers, solar cells, photodetectors and other fields in recent years due to their excellent photoelectronic properties, and they have attracted the attention of many researchers. Perovskite LEDs (PeLEDs) show great promise for next-generation lighting and display technologies, and the external quantum efficiency (EQE) values of polycrystalline thin-film PeLEDs exceed 20%, which is undoubtedly a big breakthrough in lighting and display fields. However, the toxicity and instabilities of lead-based MHPs remain major obstacles limiting their further commercial applications.

View Article and Find Full Text PDF

Lead halide perovskites have garnered interest in light-emitting diode (LED) applications due to their strong emission and tunable properties. However, conventional synthesis methods involve energy-intensive thermal processes and hazardous organic solvents, raising environmental concerns. In this study, we report a simple and eco-friendly mechanochemical approach that produces phase-pure blue-emitting CsCuI (emission at 440 nm) and yellow-emitting CsCuI (emission at 570 nm) phosphors through polarity modulation and control of grinding duration.

View Article and Find Full Text PDF

This work reports on the preparation process of a double-layer perovskite active layer. The first active layer film, CsKPEAPbIBr, was fabricated using a spin-coating method, while the second active layer, MAPbBr, was deposited using MAPbBr single crystals as the evaporation source. Additionally, doping the PEDOT: PSS hole transport layer with ETA and EDA can enhance the uniformity of the perovskite film and reduce voids, improving charge transport efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!