A bioorthogonally activatable photosensitiser for site-specific photodynamic therapy.

Chem Commun (Camb)

Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, P. R. China.

Published: January 2020

A boron dipyrromethene based photosensitiser substituted with a 1,2,4,5-tetrazine moiety has been prepared of which the photoactivity can be activated upon an inverse-electron-demand Diels-Alder reaction with trans-cyclooctene derivatives. By using a biotin-conjugated trans-cyclooctene to tag the biotin-receptor-positive HeLa cells, this photosensitiser exhibits site-specific activation through cycloaddition, leading to high photocytotoxicity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc07938fDOI Listing

Publication Analysis

Top Keywords

bioorthogonally activatable
4
activatable photosensitiser
4
photosensitiser site-specific
4
site-specific photodynamic
4
photodynamic therapy
4
therapy boron
4
boron dipyrromethene
4
dipyrromethene based
4
based photosensitiser
4
photosensitiser substituted
4

Similar Publications

Bioorthogonal strategy-triggered In situ co-activation of aggregation-induced emission photosensitizers and chemotherapeutic prodrugs for boosting synergistic chemo-photodynamic-immunotherapy.

Biomaterials

January 2025

State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, PR China. Electronic address:

In situ activation of prodrugs or photosensitizers is a promising strategy for specifically killing tumor cells while avoiding toxic side effects. Herein, we originally develop a bioorthogonally activatable prodrug and pro-photosensitizer system to synchronously yield an aggregation-induced emission (AIE) photosensitizer and a chemotherapeutic drug for synergistic chemo-photodynamic-immunotherapy of tumors. By employing molecular engineering strategy, we rationally design a family of tetrazine-functionalized tetraphenylene-based photosensitizers, one of which (named TzPS5) exhibits a high turn-on ratio, a NIR emission, a typical AIE character, and an excellent ROS generation efficiency upon bioorthogonal-activation.

View Article and Find Full Text PDF

Conditional Relay Activation of Theranostic Prodrug by Pretargeting Bioorthogonal Trigger and Fluorescence-Guided Visible Light Irradiation.

Angew Chem Int Ed Engl

December 2024

Laboratory of Medicinal Chemical Biology, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, College of Pharmaceutical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China.

Bioorthogonalized light-responsive click-and-uncage platform has enabled precise cell surface engineering and timed payload release, but most of such photoactivatable prodrugs have "always-on" photoactivity leading to the dark toxicity. On the other hand, the conditionally activatable photocage is limited to the application of fluorogenic probe/photosensitizer liberation. Herein, we devise a conditionally activatable theranostic platform based on the tetrazine (Tz)-boron-dipyrromethene (BODIPY) construct, in which tetrazine serves as a quencher motif to disable both the fluorescence and photoresponsivity of BODIPY.

View Article and Find Full Text PDF

The revolutionary impact of photoredox catalytic processes has ignited novel avenues for exploration, empowering us to delve into nature in unprecedented ways and to pioneer innovative biotechnologies for therapy and diagnosis. However, integrating artificial photoredox catalysis into living systems presents significant challenges, primarily due to concerns over low targetability, low compatibility with complex biological environments, and the safety risks associated with photocatalyst toxicity. To address these challenges, herein, we present a novel bioorthogonally activatable photoredox catalysis approach.

View Article and Find Full Text PDF

Achieving selective and durable inhibition of programmed death ligand 1 (PD-L1) in tumors for T cell activation remains a major challenge in immune checkpoint blockade therapy. We herein presented a set of clickable inhibitors for spatially confined PD-L1 degradation and radioimmunotherapy of cancer. Using metabolic glycan engineering click bioorthogonal chemistry, PD-L1 expressed on tumor cell membranes was labeled with highly active azide groups.

View Article and Find Full Text PDF
Article Synopsis
  • Drug-resistant B cell leukemia shows a unique combination of CXCR5 and CXCR3 receptors, which can help in categorizing patients based on their treatment response.
  • Researchers have developed a new method using activatable chemokines that can selectively label drug-resistant leukemia cells, allowing for better visualization and understanding of these cells.
  • This innovative chemical approach provides a flexible way to analyze different cell types based on their chemokine expressions, potentially improving personalized treatment strategies for blood cancers.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!