The possibility of the electrochemical promotion of different solid-to-solid transformations including the performance of successive cation and anion insertion processes has been tested using malachite green, a triphenylmethane dye, in contact with aqueous NaCl electrolyte. Electrochemical data using the voltammetry of microparticles methodology reveal significant differences with the solution phase electrochemistry of the dye. Voltammetric data, combined with atomic force microscopy, focusing ion beam-field emission scanning electron microscopy, and high-resolution field emission scanning electron microscopy permit characterization of the oxidative dissolution, oxidation with anion insertion, reduction with cation insertion and reduction with anion issue processes, whose thermochemical aspects, involving separate ion and electron transport contributions, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cp05835d | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr 75168, Iran.
Molecular dynamics simulations were conducted on mixtures of ionic liquids (ILs) and alcohols, specifically methanol, ethanol, and 1-propanol. Two different ILs, [Mmim][MeSO] and [Bmim][MeSO], were used with varying alcohol mole fractions to investigate the impact of alkyl chain length of cations, alcohol types, and alcohol concentrations on different structural and dynamic properties. Unique characteristics of the ILs were observed due to the varying polarity of solvents and the creation of diverse local environments surrounding the ILs.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemistry, Himachal Pradesh University, Summerhill, Shimla, Himachal Pradesh 171005, India.
Herein, pine needles derived spherical nanocellulose (SNC) was combined with aniline to form SNC-polyaniline (SNC-PANI), followed by modification with montmorillonite (MMT) to form SNC-PANI-MMT composite. The as-synthesized materials were characterized by FTIR, XRD, XPS, TGA, FESEM, and EDS and evaluated for the simultaneous adsorption of cationic and anionic dyes, malachite green (MG), and Congo red (CR) from MG-CR mixture, and fuchsin basic (FB) and methyl orange (MO) from FB-MO mixture. Non-linear kinetics of adsorption showed the anionic dyes, CR and MO to follow pseudo-first order kinetics with 91.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran. Electronic address:
The increasing prevalence of micropollutants like cationic and anionic dyes in wastewater creates an influential environmental challenge, mainly due to their toxic effects and persistence. Current methods often lack the efficiency and versatility to cope with a wide variety of contaminants. This study explores the modification of TEMPO-oxidized cellulose nanofibers (TOCNF) using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) to enhance their cationic properties.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) in surface waters by releasing soil P to porewater during frequent rainfall events. The extent of P release under short-term, frequent submergence has not been systematically studied in CSAs in New Zealand. A study was conducted to explore the potential of three contrasting dairy and sheep/beef farm soils (Recent, Pallic and Allophanic soils) to release P to porewater and pondwater under short-term and frequent submergence.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
Direct air capture of CO using amino acid absorbents, such as glycine or sarcosine, is constrained by the relatively slow mass transfer of CO through the air-aqueous interface. Our recent study showed a marked improvement in CO capture by introducing CO-permeable oligo-dimethylsiloxane (ODMS-MIM) oligomers with cationic (imidazolium, MIM) headgroups. In this work, we have employed all-atom molecular dynamics simulations in combination with subensemble analysis using network theory to provide a detailed molecular picture of the behavior of CO and the glycinate anions (Gly) at the ODMS-MIM decorated air-aqueous interfaces.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!