Deciphering how signaling enzymes operate within discrete microenvironments is fundamental to understanding biological processes. A-kinase anchoring proteins (AKAPs) restrict the range of action of protein kinases within intracellular compartments. We exploited the AKAP targeting concept to create genetically encoded platforms that restrain kinase inhibitor drugs at distinct subcellular locations. cal inase nhibition () allows us to ascribe organelle-specific functions to broad specificity kinases. Using chemical genetics, super resolution microscopy, and live-cell imaging we discover that centrosomal delivery of Polo-like kinase 1 (Plk1) and Aurora A (AurA) inhibitors attenuates kinase activity, produces spindle defects, and prolongs mitosis. Targeted inhibition of Plk1 in zebrafish embryos illustrates how centrosomal Plk1 underlies mitotic spindle assembly. Inhibition of kinetochore-associated pools of AurA blocks phosphorylation of microtubule-kinetochore components. This versatile precision pharmacology tool enhances investigation of local kinase biology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6930117PMC
http://dx.doi.org/10.7554/eLife.52220DOI Listing

Publication Analysis

Top Keywords

local kinase
8
kinase
5
subcellular drug
4
drug targeting
4
targeting illuminates
4
illuminates local
4
kinase action
4
action deciphering
4
deciphering signaling
4
signaling enzymes
4

Similar Publications

Background: A novel anti-human epidermal growth factor receptor 2 (HER2) antibody-drug conjugate (ADC) GQ1001 was assessed in patients with previously treated HER2 positive advanced solid tumors in a global multi-center phase Ia dose escalation trial.

Methods: In this phase Ia trial, a modified 3 + 3 study design was adopted during dose escalation phase. Eligible patients were enrolled, and GQ1001 monotherapy was administered intravenously every 3 weeks.

View Article and Find Full Text PDF

Structural insights into isoform-specific RAS-PI3Kα interactions and the role of RAS in PI3Kα activation.

Nat Commun

January 2025

NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Mutations in RAS and PI3Kα are major drivers of human cancer. Their interaction plays a crucial role in activating PI3Kα and amplifying the PI3K-AKT-mTOR pathway. Disrupting RAS-PI3Kα interaction enhances survival in lung and skin cancer models and reduces tumor growth and angiogenesis, although the structural details of this interaction remain unclear.

View Article and Find Full Text PDF

Background: The immune suppression mechanisms in pancreatic ductal adenocarcinoma (PDAC) remain unknown, but preclinical studies have implicated macrophage-mediated immune tolerance. Hence, pathways that regulate macrophage phenotype are of strategic interest, with reprogramming strategies focusing on inhibitors of phosphoinositide 3-kinase-gamma (PI3Kγ) due to restricted immune cell expression. Inhibition of PI3Kγ alone is ineffective in PDAC, despite increased infiltration of CD8+ T cells.

View Article and Find Full Text PDF

A signaling molecule from intratumor bacteria promotes trastuzumab resistance in breast cancer cells.

Proc Natl Acad Sci U S A

January 2025

Key Laboratory of Molecular Nanostructure and Nanotechnology, Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Emerging evidence indicates that intratumor bacteria exist as an active and specific tumor component in many tumor types beyond digestive and respiratory tumors. However, the biological impact and responsible molecules of such local bacteria-tumor direct interaction on cancer therapeutic response remain poorly understood. Trastuzumab is among the most commonly used drugs targeting the receptor tyrosine-protein kinase erbB-2 (ErbB2) in breast cancer, but its resistance is inevitable, severely limiting its clinical effectiveness.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, airway obstruction, and lung damage, often triggered by cigarette smoke. Dysregulated autophagy and inflammation are key contributors to its progression. Although double-stranded RNA-binding protein Staufen homolog 1 (STAU1), a multifunctional protein primarily involved in mRNA transport and localization, is identified as a potential biomarker, its role in COPD pathogenesis remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!