Using NMR Chemical Shifts and Cryo-EM Density Restraints in Iterative Rosetta-MD Protein Structure Refinement.

J Chem Inf Model

Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio 43210, United States.

Published: May 2020

Cryo-EM has become one of the prime methods for protein structure elucidation, frequently yielding density maps with near-atomic or medium resolution. If protein structures cannot be deduced unambiguously from the density maps, computational structure refinement tools are needed to generate protein structural models. We have previously developed an iterative Rosetta-MDFF protocol that used cryo-EM densities to refine protein structures. Here we show that, in addition to cryo-EM densities, incorporation of other experimental restraints into the Rosetta-MDFF protocol further improved refined structures. We used NMR chemical shift (CS) data integrated with cryo-EM densities in our hybrid protocol in both the Rosetta step and the molecular dynamics (MD) simulations step. In 15 out of 18 cases for all MD rounds, the refinement results obtained when density maps and NMR chemical shift data were used in combination outperformed those of density map-only refinement. Notably, the improvement in refinement was highest when medium and low-resolution density maps were used. With our hybrid method, the RMSDs of final models obtained were always better than the RMSDs obtained by our previous protocol with just density refinement for both medium (6.9 Å) and low (9 Å) resolution maps. For all the six test proteins with medium resolution density maps (6.9 Å), the final refined structure RMSDs were lower for the hybrid method than for the cryo-EM only refinement. The final refined RMSDs were less than 1.5 Å when our hybrid protocol was used with 4 Å density maps. For four out of the six proteins the final RMSDs were even less than 1 Å. This study demonstrates that by using a combination of cryo-EM and NMR restraints, it is possible to refine structures to atomic resolution, outperforming single restraint refinement. This hybrid protocol will be a valuable tool when only low-resolution cryo-EM density data and NMR chemical shift data are available to refine structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262651PMC
http://dx.doi.org/10.1021/acs.jcim.9b00932DOI Listing

Publication Analysis

Top Keywords

density maps
24
nmr chemical
16
cryo-em densities
12
chemical shift
12
shift data
12
hybrid protocol
12
density
10
cryo-em
8
cryo-em density
8
protein structure
8

Similar Publications

The widespread propagation of wireless communication devices, from smartphones and tablets to Internet of Things (IoT) systems, has become an integral part of modern life. However, the expansion of wireless technology has also raised public concern about the potential health risks associated with prolonged exposure to electromagnetic fields. Our objective is to determine the optimal machine learning model for constructing electric field strength maps across urban areas, enhancing the field of environmental monitoring with the aid of sensor-based data collection.

View Article and Find Full Text PDF

Accurate crop density estimation is critical for effective agricultural resource management, yet existing methods face challenges due to data acquisition difficulties and low model usability caused by inconsistencies between optical and radar imagery. This study presents a novel approach to maize density estimation by integrating optical and radar data, addressing these challenges with a unique mapping strategy. The strategy combines available data selection, key feature extraction, and optimization to improve accuracy across diverse growth stages.

View Article and Find Full Text PDF

Epithelial tissues in vitro undergo dynamic changes while differentiating heterogeneously on the culture substrate. This gives rise to diverse cellular arrangements which are undistinguished by conventional analysis approaches, such as transepithelial electrical resistance measurement or permeability assays. In this context, solid substrate-based systems with integrated electrodes and electrochemical impedance monitoring capability can address the limited spatiotemporal resolution of traditional porous membrane-based methods.

View Article and Find Full Text PDF

Background And Purpose: Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.

Methods: This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450).

View Article and Find Full Text PDF

To improve the scientific accuracy and precision of children's physical fitness evaluations, this study proposes a model that combines self-organizing maps (SOM) neural networks with cluster analysis. Existing evaluation methods often rely on traditional, single statistical analyses, which struggle to handle the complexity of high-dimensional, nonlinear data, resulting in a lack of precision and personalization. This study uses the SOM neural network to reduce the dimensionality of high-dimensional health data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!