Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-019-04584-w | DOI Listing |
Ecol Appl
January 2025
Department of Biodiversity, Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, Spain.
Livestock grazing and trampling have been shown to reduce arthropod populations. Among arthropods, defoliating lepidopterans are particularly important for their impact on trees, the keystone structures of agroforestry systems. This study investigates the impact of livestock on the community of defoliating lepidopterans in agroforestry systems.
View Article and Find Full Text PDFInsect Sci
November 2024
Programa de Pós-graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Rio Grande do Sul, Brazil.
Resource partitioning among sympatric species is crucial for assembling ecological communities, such as caterpillar-ant assemblages in tropical forests. Myrmecophilous caterpillars use behavioral and chemical strategies to coexist with ants, avoiding attacks. While these strategies are well-understood in single pair of interacting species, such as those involving myrmecophiles and ants, their role in complex multitrophic interactions that include several species of plants, herbivores and ants remains unclear.
View Article and Find Full Text PDFEnviron Microbiol Rep
December 2024
Biodiversity and Interactions Between Micro-organisms/Insects/Plants (IMIP), Institut de Recherche sur la Biologie de l'Insecte (IRBI)-UMR 7261 CNRS/Université de Tours, Tours, France.
Soil-borne microorganisms can impact leaf-chewing insect fitness by modifying plant nutrition and defence. Whether the altered insect performance is linked to changes in microbial partners of caterpillars remains unclear. We investigated the effects of root inoculation with soil bacteria or fungi on the gut bacterial community and biomass of the folivore Spodoptera exigua.
View Article and Find Full Text PDFBees and moths are globally important pollinators. Xeric barrens in the largely mesic northeastern USA support high levels of pollinator diversity, including rare bees and moths. We investigated the response of bee vs.
View Article and Find Full Text PDFRapid technological advances and growing participation from amateur naturalists have made countless images of insects in their natural habitats available on global web portals. Despite advances in automated species identification, traits like developmental stage or health remain underexplored or manually annotated, with limited focus on automating these features. As a proof-of-concept, we developed a computer vision model utilizing the YOLOv5 algorithm to accurately detect monarch butterfly caterpillars in photographs and classify them into their five developmental stages (instars).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!