Monocytes play a major role in the defense against pathogens. They are rapidly mobilized to inflamed sites where they exert both proinflammatory and regulatory effector functions. It is still poorly understood how this dynamic and exceptionally plastic system is controlled at the molecular level. Herein, we evaluated the differentiation process that occurs in Ly6C monocytes during oral infection by . Flow cytometry and single-cell analysis revealed distinct activation status and gene expression profiles in the bone marrow, the spleen and the lamina propria of infected mice. We provide further evidence that acquisition of effector functions, such as the capacity to produce interleukin-27, is accompanied by distinct waves of epigenetic programming, highlighting a role for STAT1/IRF1 in the bone marrow and AP-1/NF-κB in the periphery. This work broadens our understanding of the molecular events that occur in vivo during monocyte differentiation in response to inflammatory cues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6920430PMC
http://dx.doi.org/10.1038/s42003-019-0718-6DOI Listing

Publication Analysis

Top Keywords

oral infection
8
effector functions
8
bone marrow
8
monocytes undergo
4
undergo multi-step
4
multi-step differentiation
4
differentiation mice
4
mice oral
4
infection monocytes
4
monocytes play
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!