Adaptive evolution is a major driver of organism diversification, but the links between phenotypic traits and environmental niche remain little documented in tropical trees. Moreover, trait-niche relationships are complex because a correlation between the traits and environmental niches displayed by a sample of species may result from (a) convergent evolution if different environmental conditions have selected different sets of traits, and/or (b) phylogenetic inertia if niche and morphological differences between species are simply function of their phylogenetic divergence, in which case the trait-niche correlation does not imply any direct causal link. Here, we aim to assess the respective roles of phylogenetic inertia and convergent evolution in shaping the differences of botanical traits and environmental niches among congeneric African tree species that evolved in different biomes.This issue was addressed with the tree genus Benn. (Leguminosae and Detarioideae), which contains 13 African species occupying various forest habitat types, from rain forest to dry woodlands, with different climate and soil conditions. To this end, we combined morphological data with ecological niche modelling and used a highly resolved plastid phylogeny of the 13 African species.First, we demonstrated phylogenetic signals in both morphological traits (Mantel test between phylogenetic and morphological distances between species: = .24, = .031) and environmental niches (Mantel test between phylogenetic and niche distances between species: = .23, = .025). Second, we found a significant correlation between morphology and niche, at least between some of their respective dimensions (Mantel's = .32, = .013), even after accounting for phylogenetic inertia (Phylogenetic Independent Contrast: = .69, = .018). This correlation occurred between some leaflet and flower traits and solar radiation, relative humidity, precipitations, and temperature range.Our results demonstrate the convergent evolution of some morphological traits in response to climatic factors in congeneric tree species and highlight the action of selective forces, along with neutral ones, in shaping the divergence between congeneric tropical plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912925 | PMC |
http://dx.doi.org/10.1002/ece3.5740 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg 1790 AB, The Netherlands.
Heterocytes, specialized cells for nitrogen fixation in cyanobacteria, are surrounded by heterocyte glycolipids (HGs), which contribute to protection of the nitrogenase enzyme from oxygen. Diverse HGs preserve in the sediment and have been widely used as evidence of past nitrogen fixation, and structural variation has been suggested to preserve taxonomic information and reflect paleoenvironmental conditions. Here, by comprehensive HG identification and screening of HG biosynthetic gene clusters throughout cyanobacteria, we reconstruct the convergent evolutionary history of HG structure, in which different clades produce the same HGs.
View Article and Find Full Text PDFThyroid
January 2025
Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Gwanak-gu, Republic of Korea.
Although patients with anaplastic thyroid cancer (ATC) generally have a poor prognosis and there are currently no effective treatment options, survival and response to therapy vary between patients. Genomic and transcriptomic profiles of ATC have been reported; however, a comprehensive study of the tumor microenvironment (TME) of ATC is still lacking. This study aimed to elucidate the TME characteristics associated with ATC and their prognostic implications.
View Article and Find Full Text PDFJ Geriatr Phys Ther
January 2025
VA Eastern Colorado Geriatric Research Education and Clinical Center (GRECC), VA Eastern Colorado Health Care System, Aurora, Colorado.
Background: In skilled nursing facilities (SNFs), i-STRONGER is a novel, high-intensity resistance training approach that incorporates progressive resistance training to promote greater improvements in patient function compared to usual care. To inform large-scale expansion of i-STRONGER as standard-of-care in SNFs, this mixed-methods study assessed rehabilitation providers' perceptions of i-STRONGER and purported needs for its adoption.
Methods: Forty-three rehabilitation providers participated in an 18-week, interactive i-STRONGER training program.
Cell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFMol Plant Pathol
January 2025
Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
In the coevolutionary process between plant pathogens and hosts, pathogen effectors, primarily proteinaceous, engage in interactions with host proteins, such as plant transcription factors (TFs), during the infection process. This review delves into the intricate interplay between TFs and effectors, a key aspect in the prolonged and complex battle between plants and pathogens. Effectors strategically manipulate TFs using diverse tactics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!