Background: In the search for new antidepressants, clinical researchers have been using drugs that simultaneously modulate multiple targets. During preclinical and clinical trials, the glutamatergic modulators riluzole and ketamine have received particular attention. Glutamatergic agents have a modulatory effect on synaptic transmission, so they can act on both neurons and astrocytes. In addition to influencing the quantity of glutamate released, these modulators can also affect the expression, localization, and functionality of glutamate-binding sites.
Objective: This review discusses the complexity of the glutamatergic system, the ambiguity of data regarding glutamate levels in patients with depression, as well as the mechanisms of action for riluzole and ketamine, which includes their relation to the physiology of glutamatergic transmission. The principal aim is to contribute to the development of novel glutamatergic antidepressant medications whilst emphasizing the need for innovative approaches that evaluate their effects on extracellular glutamate.
Methods: Literature was obtained via PubMed by searching the term in combination with each of the following terms: , and . The search was restricted to full-text articles published in English between 1985 and 2018 relating to both the modulatory mechanisms of glutamatergic-binding proteins and the antidepressant actions of these medicines. Articles about mechanisms associated with synaptic plasticity and antidepressant effects were excluded.
Results: Although experimental data relates glutamatergic signaling to the pathophysiology of major depression and bipolar disorder, the role of glutamate-as well as its extracellular concentration in patients with said disorders-is still unclear. Riluzole's antidepressant action is ascribed to its capacity to reduce glutamate levels in the synaptic cleft, and ketamine's effect has been associated with increased extracellular glutamate levels.
Conclusions: The strategy of using glutamatergic modulators as therapeutic agents requires a better understanding of the role of glutamate in the pathophysiology of depression. Gaining such understanding is a challenge because it entails evaluating different targets as well as the effects of these modulators on the kinetics of glutamate uptake. Essentially, glutamate transport is a dynamic process and, currently, it is still necessary to develop new approaches to assay glutamate in the synaptic cleft. ORCID: 0000-0002-3358-6939.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911922 | PMC |
http://dx.doi.org/10.1016/j.curtheres.2019.100566 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Pharmacy, DIFAR, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, 16148, Genoa, Italy.
The central nervous system (CNS) is not an immune-privileged compartment, but it is intimately intertwined with the immune system. Among the components shared by the two compartments is the complement, a main constituent of innate immunity, which is also produced centrally and controls the development and organization of synaptic connections. Complement is considered a doubled-faced system that, besides controlling the physiological development of the central network, also subserves synaptic engulfment pivotal to the progression of neurodegenerative diseases.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system.
View Article and Find Full Text PDFJ Neurosci
January 2025
Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University School of Medicine, Morgantown, WV, USA.
Synaptically released zinc is a neuronal signaling system that arises from the actions of the presynaptic vesicular zinc transporter protein ZnT3. Mechanisms that regulate the actions of zinc at synapses are of great importance for many aspects of synaptic signaling in the brain. Here, we identify the astrocytic zinc transporter protein ZIP12 as a candidate mechanism that contributes to zinc clearance at cortical synapses.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Behavioral Neuroscience Laboratory, Department of Psychology, Boğaziçi University, Bebek, 34342, Istanbul, Turkey.
Theta oscillations of the mammalian amygdala are associated with processing, encoding and retrieval of aversive memories. In the hippocampus, the power of the network theta oscillation is modulated by basal forebrain (BF) GABAergic projections. Here, we combine anatomical and computational approaches to investigate if similar BF projections to the amygdaloid complex provide an analogous modulation of local network activity.
View Article and Find Full Text PDFNeurobiol Stress
January 2025
Department of Translational Neuroscience, Wake Forest University, School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA.
With the recent rise in the rate of alcohol use disorder (AUD) in women, the historical gap between men and women living with this condition is narrowing. While there are many commonalities in how men and women are impacted by AUD, an accumulating body of evidence is revealing sex-dependent adaptations that may require distinct therapeutic approaches. Preclinical rodent studies are beginning to shed light on sex differences in the effects of chronic alcohol exposure on synaptic activity in a number of brain regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!