Advances in neuroimaging and neuroanatomy have yielded major insights concerning fundamental principles of cortical organization and evolution, thus speaking to how well different species serve as models for human brain function in health and disease. Here, we focus on cortical folding, parcellation, and connectivity in mice, marmosets, macaques, and humans. Cortical folding patterns vary dramatically across species, and individual variability in cortical folding increases with cortical surface area. Such issues are best analyzed using surface-based approaches that respect the topology of the cortical sheet. Many aspects of cortical organization can be revealed using 1 type of information (modality) at a time, such as maps of cortical myelin content. However, accurate delineation of the entire mosaic of cortical areas requires a multimodal approach using information about function, architecture, connectivity, and topographic organization. Comparisons across the 4 aforementioned species reveal dramatic differences in the total number and arrangement of cortical areas, particularly between rodents and primates. Hemispheric variability and bilateral asymmetry are most pronounced in humans, which we evaluated using a high-quality multimodal parcellation of hundreds of individuals. Asymmetries include modest differences in areal size but not in areal identity. Analyses of cortical connectivity using anatomical tracers reveal highly distributed connectivity and a wide range of connection weights in monkeys and mice; indirect measures using functional MRI suggest a similar pattern in humans. Altogether, a multifaceted but integrated approach to exploring cortical organization in primate and nonprimate species provides complementary advantages and perspectives.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6936571PMC
http://dx.doi.org/10.1073/pnas.1902299116DOI Listing

Publication Analysis

Top Keywords

cortical folding
16
cortical
12
cortical organization
12
folding parcellation
8
parcellation connectivity
8
cortical areas
8
connectivity
5
cerebral cortical
4
folding
4
humans
4

Similar Publications

Role of data-driven regional growth model in shaping brain folding patterns.

Soft Matter

January 2025

School of Environmental, Civil, Agricultural and Mechanical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.

The surface morphology of the developing mammalian brain is crucial for understanding brain function and dysfunction. Computational modeling offers valuable insights into the underlying mechanisms for early brain folding. Recent findings indicate significant regional variations in brain tissue growth, while the role of these variations in cortical development remains unclear.

View Article and Find Full Text PDF

Endoplasmic Reticulum Calcium Signaling in Hippocampal Neurons.

Biomolecules

December 2024

Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology, NAS of Ukraine, 01024 Kyiv, Ukraine.

The endoplasmic reticulum (ER) is a key organelle in cellular homeostasis, regulating calcium levels and coordinating protein synthesis and folding. In neurons, the ER forms interconnected sheets and tubules that facilitate the propagation of calcium-based signals. Calcium plays a central role in the modulation and regulation of numerous functions in excitable cells.

View Article and Find Full Text PDF

GABA/Glutamate Neuron Differentiation Imbalance and Increased AKT/mTOR Signaling in CNTNAP2 Cerebral Organoids.

Biol Psychiatry Glob Open Sci

January 2025

Biomedical Research Institute, Foundation for Research and Technology-Hellas, University Campus, Ioannina, Greece.

Background: The polygenic nature of autism spectrum disorder (ASD) requires the identification of converging genetic pathways during early development to elucidate its complexity and varied manifestations.

Methods: We developed a human cerebral organoid model from induced pluripotent stem cells with targeted genome editing to abolish protein expression of the ASD risk gene.

Results: CNTNAP2 cerebral organoids displayed accelerated cell cycle, ventricular zone disorganization, and increased cortical folding.

View Article and Find Full Text PDF

Comparison and calibration of MP2RAGE quantitative T1 values to multi-TI inversion recovery T1 values.

Magn Reson Imaging

January 2025

Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States; Department of Computer Science, Vanderbilt University, Nashville, TN, United States; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.

While typical qualitative T1-weighted magnetic resonance images reflect scanner and protocol differences, quantitative T1 mapping aims to measure T1 independent of these effects. Changes in T1 in the brain reflect structural changes in brain tissue. Magnetization-prepared two rapid acquisition gradient echo (MP2RAGE) is an acquisition protocol that allows for efficient T1 mapping with a much lower scan time per slab compared to multi-TI inversion recovery (IR) protocols.

View Article and Find Full Text PDF

Human brain dynamics are shaped by rare long-range connections over and above cortical geometry.

Proc Natl Acad Sci U S A

January 2025

Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona 08018, Spain.

Article Synopsis
  • A topological principle suggests that the physical structure of the brain (its anatomy) significantly influences its functional dynamics.
  • Researchers found that while local connectivity patterns can explain much of brain function, they overlook the essential role of rare long-range cortical connections, which enhance information processing.
  • By incorporating both local connections and these rare long-range connections into a combined model (EDR+LR), they showed that this approach more effectively captures the complexities of brain activity compared to traditional geometric representations.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!