The genomes of most cellulolytic clostridia do not contain genes annotated as transaldolase. Therefore, for assimilating pentose sugars or for generating C precursors (such as ribose) during growth on other (non-C) substrates, they must possess a pathway that connects pentose metabolism with the rest of metabolism. Here we provide evidence that for this connection cellulolytic clostridia rely on the sedoheptulose 1,7-bisphosphate (SBP) pathway, using pyrophosphate-dependent phosphofructokinase (PP-PFK) instead of transaldolase. In this reversible pathway, PFK converts sedoheptulose 7-phosphate (S7P) to SBP, after which fructose-bisphosphate aldolase cleaves SBP into dihydroxyacetone phosphate and erythrose 4-phosphate. We show that PP-PFKs of and C indeed can convert S7P to SBP, and have similar affinities for S7P and the canonical substrate fructose 6-phosphate (F6P). By contrast, (ATP-dependent) PfkA of , which does rely on transaldolase, had a very poor affinity for S7P. This indicates that the PP-PFK of cellulolytic clostridia has evolved the use of S7P. We further show that contains a significant SBP pool, an unusual metabolite that is elevated during growth on xylose, demonstrating its relevance for pentose assimilation. Last, we demonstrate that a second PFK of that operates with ATP and GTP exhibits unusual kinetics toward F6P, as it appears to have an extremely high degree of cooperative binding, resulting in a virtual on/off switch for substrate concentrations near its value. In summary, our results confirm the existence of an SBP pathway for pentose assimilation in cellulolytic clostridia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7029132 | PMC |
http://dx.doi.org/10.1074/jbc.RA119.011239 | DOI Listing |
NPJ Biofilms Microbiomes
November 2024
Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Animal Science and Technology, Foshan University, Foshan, 528000, China.
An intensive feeding system might improve the production cycle of yaks. However, how intensive feeding system contributes to yak growth is unclear. Here, multi-omics, including rumen metagenomics, rumen and plasma metabolomics, were performed to classify the regulatory mechanisms of intensive feeding system on yaks.
View Article and Find Full Text PDFFront Microbiol
October 2024
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States.
Introduction: Several species of cellulolytic bacteria display cellulosomes, massive multi-cellulase containing complexes that degrade lignocellulosic plant biomass (LCB). A greater understanding of cellulosome structure and enzyme content could facilitate the development of new microbial-based methods to produce renewable chemicals and materials.
Methods: To identify novel cellulosome-displaying microbes we searched 305,693 sequenced bacterial genomes for genes encoding cellulosome proteins; dockerin-fused glycohydrolases (DocGHs) and cohesin domain containing scaffoldins.
J Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, Freising, Germany.
Cellulose from lignocellulosic biomass (LB) is of increasing interest for the production of commodity chemicals. However, its use as substrate for fermentations is a challenge due to its structural complexity. In this context, the highly cellulolytic Clostridium cellulovorans has been considered an interesting microorganism for the breakdown of LB.
View Article and Find Full Text PDFBiotechnol Lett
December 2024
College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, 311300, Zhejiang Province, China.
Ruminiclostridium papyrosolvens is an anaerobic, mesophilic, and cellulolytic clostridia, promising consolidated bioprocessing (CBP) candidate for producing renewable green chemicals from cellulose, but its genetic transformation has been severely impeded by extracellular biofilm. Here, we analyzed the effects of five different inhibitors with gradient concentrations on R. papyrosolvens growth and biofilm formation.
View Article and Find Full Text PDFBioresour Technol
August 2024
Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA.
In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!