Temporal resolution in time-resolved cone-beam CT (TR-CBCT) imaging is often limited by the time needed to acquire a complete data set for image reconstruction. With the recent developments of performing nearly limited-view artifact-free reconstruction from data in a limited-view angle range and a prior image, temporal resolution of TR-CBCT imaging can be improved. One such an example is the use of Simultaneous Multiple Artifacts Reduction in Tomographic RECONstruction (SMART-RECON) [1] technique. However, with SMART-RECON, one can only improve temporal resolution up to 1 frame per second (fps) which is an improvement of 4.5 times over that of the conventional FBP reconstruction. In this paper, a new technique referred to as enhanced SMART-RECON (eSMART-RECON) was introduced to enhance the temporal performance of SMART-RECON in a multi-sweep CBCT data acquisition protocol. Both numerical simulation studies with ground truth and in vivo human subject studies using C-arm CBCT acquisition systems were conducted to demonstrate the following key results: for a multi-sweep CBCT acquisition protocol, eSMART-RECON enables 4-7.5 fps temporal resolution for TR-CBCT which is 4-7.5 times better than that offered by the original SMART-RECON, and 18-34 times better than that offered by the conventional FBP reconstruction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7307269 | PMC |
http://dx.doi.org/10.1109/TMI.2019.2960720 | DOI Listing |
Eur Arch Otorhinolaryngol
January 2025
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, Nancy, 54000, France.
Background And Purpose: To evaluate various anatomical parameters and their relationship to chorda tympani nerve (CTN) injury and round window (RW) access during cochlear implantation.
Materials And Methods: Ultra-high-resolution CT images of 66 patients were retrospectively reviewed and compared with operative reports. The facial recess and the round window were analyzed, mainly using the chorda-facial angle (CFA), the width of the facial recess, the CTN-tympanic annulus distance, the RW-mastoid portion of the facial nerve angle, and the type of RW.
Sci Data
January 2025
Department of Earth and Environmental Engineering, Columbia University, New York, USA.
The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.
View Article and Find Full Text PDFAm J Health Syst Pharm
January 2025
Veterans Health Care System of the Ozarks, Fayetteville, AR, USA.
Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Neuroscience Department, University of Connecticut Health, School of Medicine, Institute for Systems Genomics, Farmington, CT 06030, USA.
Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.
Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.
Plants (Basel)
January 2025
Laboratory of Precision Agriculture (LAP), Department of Biosystems Engineering, "Luiz de Queiroz" College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba 13418-900, São Paulo, Brazil.
Coffee yield exhibits plant-level variability; however, due to operational issues, especially in smaller operations, the scouting and management of coffee yields are often hindered. Thus, a cell-size approach at the field level is proposed as a simple and efficient solution to overcome these constraints. This study aimed to present the feasibility of a cell-size approach to characterize spatio-temporal coffee production based on soil and plant attributes and yield (biennial effects) and to assess strategies for enhanced soil fertilization recommendations and economic results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!