Improvement in organic solvent resistance and activity of metalloprotease by directed evolution.

J Biotechnol

College of Biological and Pharmaceutical Engineering, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, West Anhui University, Lu'an City 237012, China. Electronic address:

Published: February 2020

Improving enzyme stability in the presence of organic solvent is crucial for non-aqueous catalysis. In this study, directed evolution was applied to improve the tolerance of metalloprotease PT121 towards organic solvent. In presence of acetonitrile and acetone, three mutants (T46Y, H224 F, and H224Y) of PT121 showed excellent solvent stability, which increased their half-lives by 1.2-3.5-fold as compared to the wild-type enzyme. Kinetic constants (K and k values) of the caseinolysis reaction presented H224 F and H224Y mutants have higher affinity than the wild-type, but T46Y mutant were similar to those of the wild-type enzyme. Interestingly, combined mutants T46Y/H224 F and T46Y/H224Y mutants presented awesome stability and excellent caseinolytic activity. Molecular dynamic simulation suggest that improved enzyme stability may be attributed to extensive non-covalent bond network resulting in a more compact structure. Disruption of the disulphide bond formation between Cys-30 and Cys-58 residues in the F56 V mutant is possibly the reason behind its low stability among all the selected mutants. Additionally, T46Y/H224 F and T46Y/H224Y showed a higher peptide synthetic activity in the presence of organic solvents than the wild-type, which renders these mutant enzymes as promising biocatalysts for biotechnological applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2019.12.014DOI Listing

Publication Analysis

Top Keywords

organic solvent
12
directed evolution
8
enzyme stability
8
presence organic
8
h224 f h224y
8
wild-type enzyme
8
t46y/h224 f t46y/h224y
8
stability
5
mutants
5
improvement organic
4

Similar Publications

A Stable Zn(II) Metal-Organic Framework as Turn-On and Blue-Shift Fluorescence Sensor for Amino Acids and Dipicolinic Acid in Living Cells or Using Aerosol Jet Printing.

Inorg Chem

January 2025

School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

Amino acids and dipicolinic acid (DPA) are important biomarkers for identifying human health. Establishing rapid, accurate, sensitive, and simple assays is essential for disease prevention and early diagnosis. In this work, a novel Zn(II) metal-organic framework (MOF) with the formula {[Zn(μ-OH)(BTDI)(dpp)]·dpp·4HO·2DMF} (, where denotes Jiangxi University of Science and Technology, HBTDI = 5,5'-(benzo[][1,2,5]thiadiazole-4,7-diyl)diisophthalic acid; dpp = 1,3-di(4-pyridyl)propane) was successfully synthesized via a mixed-ligands strategy.

View Article and Find Full Text PDF

Electrochemistry and Gold Catalysis: Unusual Allies in Redox Mediated Organic Reactions.

Chem Asian J

January 2025

Núcleo de Pesquisas em Produtos Naturais e Sintéticos (NPPNS), Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto-SP, 14040-903, Brazil.

Devising advanced protocols to avoid harsh oxidants is of paramount interest in gold catalyzed redox reactions. To address this issue, electrochemical oxidation of precatalytic Au complexes to catalytically active Au in situ species has started to emerge as a potential alternative. Such endeavours not only unlocked the possibility of direct anodic oxidation of Au to Au, but also enables stepwise oxidation of Au to Au to Au through the mediation of electro-generated organic radicals.

View Article and Find Full Text PDF

Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.

View Article and Find Full Text PDF

A screening method for polyester films-degrading microorganisms and enzymes.

J Hazard Mater

January 2025

Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, Vilnius 10257, Lithuania.

Enzymatic degradation of plastic pollution offers a promising environmentally friendly waste management strategy, however, suitable biocatalysts must be screened and developed. Traditional screening methods using soluble or solubilised polymers do not necessarily identify enzymes that are effective against solid or crystalline polymers. This study presents a simple, time-saving and cost-effective method for identifying microorganisms and enzymes capable of degrading polymeric films.

View Article and Find Full Text PDF

protein design has advanced such that many peptide assemblies and protein structures can be generated predictably and quickly. The drive now is to bring functions to these structures, for example, small-molecule binding and catalysis. The formidable challenge of binding and orienting multiple small molecules to direct chemistry is particularly important for paving the way to new functionalities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!