DNA aptamers (oligonucleotides) interacting with thrombin exosite I contain G-quadruplex, two T-T, and one T-G-T loops in their structure. They prevent exosite I binding with fibrinogen and thrombin receptors on platelet surface, thereby suppressing thrombin-stimulated formation of fibrin from fibrinogen and platelet aggregation. Earlier, we synthesized original antithrombin aptamer RE31 (5'-GTGACGTAGGTTGGTGTGGTTGGGGCGTCAC-3') that contained (in addition to G-quadruplex) a hinge region connected to six pairs of complementary bases (duplex region). In this study, we compared properties of RE31 aptamer and its analogues containing varying number of bases in the duplex region and nucleotide insertions in the hinge region. Reduction in the number of nucleotides in the duplex region by 1 to 4 pairs (in comparison with RE31 aptamer) resulted in the decrease of the structural stability of aptamers (manifested as lower melting temperatures) and their ability to inhibit thrombin-stimulated fibrin formation in human blood plasma in tests of thrombin, prothrombin, and activated partial thromboplastin times. However, an increase in the number of bases by 1 to 2 pairs did not cause significant changes in the stability and antithrombin activity of the aptamers. Insertions into the hinge region of RE31 aptamer decreased its antithrombin activity. Investigation of RE31 antithrombotic properties demonstrated that RE31 (i) slowed down thrombin formation in human blood plasma (thrombin generation test), (ii) accelerated lysis of fibrin clot by tissue plasminogen activator in in vitro model, and (iii) suppressed arterial thrombosis in in vivo model. Based on the obtained data, RE31 aptamer can be considered as a potentially effective antithrombotic compound.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297919120113DOI Listing

Publication Analysis

Top Keywords

re31 aptamer
16
hinge region
12
duplex region
12
dna aptamers
8
thrombin exosite
8
bases duplex
8
number bases
8
insertions hinge
8
formation human
8
human blood
8

Similar Publications

The process of unfolding of G-quadruplex structure in the RE31 DNA-aptamer and in its complex with thrombin under the action of the fluorescently labeled complementary oligonucleotides of varying length with formation of double-helix structures has been studied. It has been suggested that G-quadruplex unfolding involves formation of an intermediate complex with an oligonucleotide. Thermodynamic parameters and kinetics of unfolding of the free aptamer and its complex with thrombin differ.

View Article and Find Full Text PDF

DNA aptamers (oligonucleotides) interacting with thrombin exosite I contain G-quadruplex, two T-T, and one T-G-T loops in their structure. They prevent exosite I binding with fibrinogen and thrombin receptors on platelet surface, thereby suppressing thrombin-stimulated formation of fibrin from fibrinogen and platelet aggregation. Earlier, we synthesized original antithrombin aptamer RE31 (5'-GTGACGTAGGTTGGTGTGGTTGGGGCGTCAC-3') that contained (in addition to G-quadruplex) a hinge region connected to six pairs of complementary bases (duplex region).

View Article and Find Full Text PDF

Nucleic acid (NA) aptamers bind to their targets with high affinity and selectivity. The three-dimensional (3D) structures of aptamers play a major role in these non-covalent interactions. Here, we use a four-step approach to determine a true 3D structure of aptamers in solution using small-angle X-ray scattering (SAXS) and molecular structure restoration (MSR).

View Article and Find Full Text PDF

Rapidly Neutralizable and Highly Anticoagulant Thrombin-Binding DNA Aptamer Discovered by MACE SELEX.

Mol Ther Nucleic Acids

June 2019

Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan; JST, PRESTO, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan. Electronic address:

Article Synopsis
  • Researchers developed a highly effective thrombin-binding aptamer (TBA) using a novel method called MACE, which allows for efficient separation of aptamers from other nucleic acids during the selection process.
  • The new aptamers have demonstrated nanomolar affinity, making them significantly more effective than previously known TBAs, with one aptamer named M08 exhibiting a notably longer clotting time.
  • The study also introduced a toehold-mediated rapid antidote for safe administration, indicating that this aptamer and antidote system could be a promising new option for anticoagulant therapy.
View Article and Find Full Text PDF

Improved RE31 Analogues Containing Modified Nucleic Acid Monomers: Thermodynamic, Structural, and Biological Effects.

J Med Chem

March 2019

Department of Nucleic Acids Bioengineering, Institute of Bioorganic Chemistry, Polish Academy of Sciences , Noskowskiego 12/14 , 61-704 Poznan , Poland.

RE31 is a 31-nt DNA aptamer, consisting of the G-quadruplex and a duplex domain, which is able to effectively prolong thrombin time. This article reports on the influence of certain modified nucleotide residues on thermodynamic and biological properties as well as the folding topology of RE31. Particularly, the effect of the presence of nucleosides in unlocked nucleic acid (UNA), locked nucleic acid (LNA), or β-l-RNA series was evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!