Thermodynamic uncertainty relations quantify how the signal-to-noise ratio of a given observable is constrained by dissipation. Fluctuation relations generalize the second law of thermodynamics to stochastic processes. We show that any fluctuation relation directly implies a thermodynamic uncertainty relation, considerably increasing their range of applicability. In particular, we extend thermodynamic uncertainty relations to scenarios which include measurement and feedback. Since feedback generally breaks time-reversal invariance, the uncertainty relations involve quantities averaged over the forward and the backward experiment defined by the associated fluctuation relation. This implies that the signal-to-noise ratio of a given experiment can in principle become arbitrarily large as long as the corresponding backward experiment compensates, e.g., by being sufficiently noisy. We illustrate our results with the Szilard engine as well as work extraction by free energy reduction in a quantum dot.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.052137 | DOI Listing |
Environ Sci Technol
January 2025
College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Jinnan District, 300350 Tianjin, China.
Reclaimed asphalt pavement (RAP) is a widely used end-of-life (EoL) material in asphalt pavements to increase the material circularity. However, the performance loss due to using RAP in the asphalt binder layer often requires a thicker layer, leading to additional material usage, energy consumption, and transportation effort. In this study, we developed a parametric and probabilistic life cycle assessment (LCA) framework to robustly compare various pavement designs incorporating recycled materials.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Metallurgical and Materials Enginerring, Colorado School of Mines, Golden, Colorado 80401, United States.
The sizes of the basins of attraction on the potential energy surface are helpful indicators in determining the experimental synthesizability of metastable phases. In principle, these basins can be controlled with changes in thermodynamic conditions such as composition, pressure, and surface energy. Herein, we use random structure sampling to computationally study how alloying smoothly perturbs basin of attraction sizes.
View Article and Find Full Text PDFNat Commun
January 2025
School of Physical Science and Technology, Yangzhou University, Yangzhou, China.
The latest climate models project widely varying magnitudes of future extreme precipitation changes, thus impeding effective adaptation planning. Many observational constraints have been proposed to reduce the uncertainty of these projections at global to sub-continental scales, but adaptation generally requires detailed, local scale information. Here, we present a temperature-based adaptative emergent constraint strategy combined with data aggregation that reduces the error variance of projected end-of-century changes in annual extremes of daily precipitation under a high emissions scenario by >20% across most areas of the world.
View Article and Find Full Text PDFDalton Trans
January 2025
School of Chemistry, UNSW Sydney, NSW 2052, Australia.
In my proposed mechanism of Mo-nitrogenase there are two roles for separate N molecules. One N diffuses into the reaction zone between Fe2 and Fe6 where a strategic gallery of H atoms can capture N to form the Fe-bound HNNH intermediate which is then progressively hydrogenated through intermediates containing HNNH, NH and NH entities and then two NH in sequence. The second N can be parked in an N-pocket about 3.
View Article and Find Full Text PDFInt J Thermophys
January 2024
Material Measurement Laboratory, Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, CO 80305, USA.
The thermal conductivity of liquid -1,2-dichloroethene (R-1130(E)) was measured at temperatures ranging from 240 K to 340 K and pressures up to 25 MPa using a transient hot-wire instrument. A total of 447 thermal conductivity data points were measured along six isotherms. Each isotherm includes data at nine pressures, which were chosen to be at equal density increments starting at a pressure of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!