From normal diffusion to superdiffusion: Photothermal heating of plasmonic core-shell microgels.

Phys Rev E

Institut für Physikalische Chemie I: Kolloide und Nanooptik, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.

Published: November 2019

The motion of core-shell colloids during laser heating is studied using angle-dependent pump-probe dynamic light scattering. The cores consist of a single spherical gold nanoparticle whose localized surface plasmon resonance has a strong spectral overlap with the wavelength of the pump laser. They are homogeneously encapsulated in thick hydrogel shells composed of either chemically cross-linked poly-N-isopropylacrylamide or poly[2-(2-methoxyethoxy)ethyl methacrylate], both of which exhibit a temperature-dependent volume phase transition. Thus, upon heating beyond the transition temperature, the hydrogel shells shrink. Intensity-time autocorrelation functions are recorded while illuminating the samples with the pump laser and hence heating the gold cores. With increasing laser intensity, the dynamics changes from normal Brownian motion to superdiffusion. Nevertheless, in the high-q limit, the relaxation times can be extracted and used to estimate the temperature increase, which can reach almost 10 K. This causes a significant deswelling of the hydrogel shells, which is also measured.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.100.052605DOI Listing

Publication Analysis

Top Keywords

hydrogel shells
12
laser heating
8
pump laser
8
normal diffusion
4
diffusion superdiffusion
4
superdiffusion photothermal
4
heating
4
photothermal heating
4
heating plasmonic
4
plasmonic core-shell
4

Similar Publications

In this study, we present an ultrasensitive and specific multiplexed detection method for SARS-CoV-2 and influenza (Flu) utilizing CRISPR/Cas13a technology combined with a hydrogel-encapsulated photonic crystal (PhC) barcode integrated with hybridization chain reaction (HCR). The barcodes, characterized by core-shell structures, are fabricated through partial replication of periodically ordered hexagonally close-packed silicon dioxide beads. Consequently, the opal hydrogel shell of these barcodes features abundant interconnected pores that provide a substantial surface area for probe immobilization.

View Article and Find Full Text PDF

Traditional natural polysaccharide-based hydrogels, when used as drug carriers, often struggle to maintain long-term stability in the extremely harsh gastric environment. This results in unstable drug release and significant challenges in bioavailability. To address this issue, this study utilized inexpensive and safe natural polysaccharides-chitosan (CS) and high methoxyl pectin (HM)-as raw materials.

View Article and Find Full Text PDF

Smart core-shell microneedles for psoriasis therapy: In situ self-assembly of calcium ion-coordinated dexamethasone hydrogel.

J Control Release

January 2025

State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511443, China. Electronic address:

Psoriasis is a prevalent relapsing dermatological condition that often necessitates lifelong treatment. The distinctive thickening of the stratum corneum presents a challenge to drug penetration. The employment of microneedles has been demonstrated to enhance the transdermal drug delivery efficacy by creating multiple microchannels in the skin.

View Article and Find Full Text PDF

In this work, we investigate the pH-responsive behavior of multidomain peptide (MDP) hydrogels containing histidine. Small-angle X-ray scattering confirmed that MDP nanofibers sequester nonpolar residues into a hydrophobic core surrounded by a shell of hydrophilic residues. MDPs with histidine on the hydrophilic face formed nanofibers at all pH values tested, but the morphology of the fibers was influenced by the protonation state and the location of histidine in the MDP sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!