Coherent circulation rolls and their relevance for the turbulent heat transfer in a two-dimensional Rayleigh-Bénard convection model are analyzed. The flow is in a closed cell of aspect ratio four at a Rayleigh number Ra=10^{6} and at a Prandtl number Pr=10. Three different Lagrangian analysis techniques based on graph Laplacians (distance spectral trajectory clustering, time-averaged diffusion maps, and finite-element based dynamic Laplacian discretization) are used to monitor the turbulent fields along trajectories of massless Lagrangian particles in the evolving turbulent convection flow. The three methods are compared to each other and the obtained coherent sets are related to results from an analysis in the Eulerian frame of reference. We show that the results of these methods agree with each other and that Lagrangian and Eulerian coherent sets form basically a disjoint union of the flow domain. Additionally, a windowed time averaging of variable interval length is performed to study the degree of coherence as a function of this additional coarse graining which removes small-scale fluctuations that cause trajectories to disperse quickly. Finally, the coherent set framework is extended to study heat transport.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.053103 | DOI Listing |
Natl Sci Rev
December 2024
State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China.
The Mott-Ioffe-Regel limit sets the lower bound of the carrier mean free path for coherent quasiparticle transport. Metallicity beyond this limit is of great interest because it is often closely related to quantum criticality and unconventional superconductivity. Progress along this direction mainly focuses on the strange-metal behaviors originating from the evolution of the quasiparticle scattering rate, such as linear-in-temperature resistivity, while the quasiparticle coherence phenomena in this regime are much less explored due to the short mean free path at the diffusive bound.
View Article and Find Full Text PDFCell Rep Med
December 2024
Joint Shantou International Eye Center, Shantou University and the Chinese University of Hong Kong, Shantou, Guangdong 515041, China. Electronic address:
Inability to express the confidence level and detect unseen disease classes limits the clinical implementation of artificial intelligence in the real world. We develop a foundation model with uncertainty estimation (FMUE) to detect 16 retinal conditions on optical coherence tomography (OCT). In the internal test set, FMUE achieves a higher F1 score of 95.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France.
Coherent diffractive imaging experiments often collect incomplete datasets containing regions that lack any measurements. These regions can arise because of beamstops, gaps between detectors, or, in tomography experiments, a missing wedge of data due to a limited sample rotation range. We describe practical and effective approaches to mitigate reconstruction artifacts by bringing uniqueness back to the phase retrieval problem.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China.
The combination of reversible angular dispersion-induced microbunching (ADM) and the rapid damping storage ring provides a storage-ring-based light source with the capability to produce longitudinal coherent radiation with a high repetition rate. This paper presents a prototype design for a test facility based on the study by Jiang et al. [Sci.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA, United States of America.
Objectives: Various imaging features on optical coherence tomography (OCT) are crucial for identifying and defining disease progression. Establishing a consensus on these imaging features is essential, particularly for training deep learning models for disease classification. This study aims to analyze the inter-rater reliability in labeling the quality and common imaging signatures of retinal OCT scans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!