Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we show how plasma discharge capillaries can be numerically modeled as resistors within an RLC-series discharge circuit, allowing for a simple description of these systems, while taking into account heat and radiation losses. An analytic radial model is also provided and compared to the numerical model for plasma discharge capillaries at thermal equilibrium, with corrections due to radiation losses. Finally, diagnostic techniques based on visible spectroscopy of plasma emission lines are discussed both for atomic and molecular gases, comparing experimental results with numerical simulations and theoretical calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.100.053202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!