Robots based on simplified or abstracted biomechanical concepts can be a useful tool for investigating how and why animals move the way they do. In this paper we present an extremely simple quadruped robot, which is able to walk with no form of software or controller. Instead, individual leg movements are triggered directly by switches on each leg which detect leg loading and unloading. As the robot progresses, pitching and rolling movements of its body result in a gait emerging with a consistent leg movement order, despite variations in stride and stance time. This gait has similarities to the gaits used by walking primates and grazing livestock, and is close to the gait which was recently theorised to derive from animal body geometry. As well as presenting the design and construction of the robot, we present experimental measurements of the robot's gait kinematics and ground reaction forces determined using high speed video and a pressure mat, and compare these to gait parameters of animals taken from literature. Our results support the theory that body geometry is a key determinant of animal gait at low speeds, and also demonstrate that steady state locomotion can be achieved with little to no active control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7655146 | PMC |
http://dx.doi.org/10.1088/1748-3190/ab654e | DOI Listing |
Med Phys
January 2025
Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
Background: Total-body (TB) Positron Emission Tomography (PET) is one of the most promising medical diagnostics modalities, opening new perspectives for personalized medicine, low-dose imaging, multi-organ dynamic imaging or kinetic modeling. The high sensitivity provided by total-body technology can be advantageous for novel tomography methods like positronium imaging, demanding the registration of triple coincidences. Currently, state-of-the-art PET scanners use inorganic scintillators.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
Department of Mechanical and Aerospace Engineering, The University of Manchester, Manchester M1 3PL, UK.
This study investigates the flow field around a finite rectangular prism using both experimental and computational methods, with a particular focus on the influence of the turbulence approach adopted, the mesh resolution employed, and different subgrid length scales. Ten turbulence modelling and simulation approaches, including both 'scale-modelling' Reynolds-Averaged Navier-Stokes (RANS) models and 'scale-resolving' Delayed Detached Eddy Simulation (DDES), were tested across six different mesh resolutions. A case with sharp corners allows the location of the flow separation to be fixed, which facilitates a focus on the separated flow region and, in this instance, the three-dimensional interaction of three such regions.
View Article and Find Full Text PDFSci Rep
January 2025
South African Research Chair for Acid Mine Drainage Treatment, Tshwane University of Technology (TUT), Private Bag X680, Pretoria, 0001, South Africa.
Managing mine water in the best possible way is of great importance and depends on various factors like environmental protection, regulatory compliance and human health. To understand the complex chemical and hydrodynamic processes within the mine pool, it is critical to establish effective practices and management strategies. This study focuses on the characterisation of hydrodynamic processes affecting flooded underground mines, emphasising the importance of density stratification.
View Article and Find Full Text PDFBioinspir Biomim
January 2025
Department of Mechanical and Aeronautical Engineering, University of Pretoria, 1 Lynnwood Road, Pretoria, 0002, SOUTH AFRICA.
Albatrosses are increasingly drawing attention from the scientific community due to their remarkable flight capabilities. Recent studies suggest that grey-headed albatrosses may be the fastest and most energy-efficient of the albatross species, yet no attempts have been made to replicate their wing design. A key factor in aircraft design is the airfoil, which remains uncharacterized for the grey-headed albatross.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States.
Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!