In this article, we investigate the effects of the physical influence of a virtual human (VH) in the context of face-to-face interaction in a mixed reality environment. In Experiment 1, participants played a tabletop game with a VH, in which each player takes a turn and moves their own token along the designated spots on the shared table. We compared two conditions as follows: the VH in the virtual condition moves a virtual token that can only be seen through augmented reality (AR) glasses, while the VH in the physical condition moves a physical token as the participants do; therefore the VH's token can be seen even in the periphery of the AR glasses. For the physical condition, we designed an actuator system underneath the table. The actuator moves a magnet under the table which then moves the VH's physical token over the surface of the table. Our results indicate that participants felt higher co-presence with the VH in the physical condition, and participants assessed the VH as a more physical entity compared to the VH in the virtual condition. We further observed transference effects when participants attributed the VH's ability to move physical objects to other elements in the real world. Also, the VH's physical influence improved participants' overall experience with the VH. In Experiment 2, we further looked into the question how the physical-virtual latency in movements affected the perceived plausibility of the VH's interaction with the real world. Our results indicate that a slight temporal difference between the physical token reacting to the virtual hand's movement increased the perceived realism and causality of the mixed reality interaction. We discuss potential explanations for the findings and implications for future shared mixed reality tabletop setups.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2019.2959575 | DOI Listing |
Int J Comput Assist Radiol Surg
January 2025
Faculty of Computer Science and Research Campus STIMULATE, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.
Purpose: Structured abdominal examination is an essential part of the medical curriculum and surgical training, requiring a blend of theory and practice from trainees. Current training methods, however, often do not provide adequate engagement, fail to address individual learning needs or do not cover rare diseases.
Methods: In this work, an application for structured Abdominal Examination Training using Augmented Reality (AETAR) is presented.
Accid Anal Prev
January 2025
Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India. Electronic address:
Pedestrians use visual cues (i.e., gaze) to communicate with the other road users, and visual attention towards the surrounding environment is essential to be situationally aware and avoid oncoming conflicts.
View Article and Find Full Text PDFNeurorehabil Neural Repair
January 2025
Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy.
Background And Objective: The metaverse refers to a digital realm accessible via internet connections using virtual reality and augmented reality glasses for promoting a new era of social rehabilitation. It represents the next-generation mobile computing platform expected to see widespread utilization in the future. In the context of rehabilitation, the metaverse is envisioned as a novel approach to enhance the treatment of human functioning exploiting the "synchronized brains" potential exacerbated by social interactions in virtual scenarios.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Ophthalmology, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong.
Background: The prevalence of age-related eye disorders is increasing with the aging of the global population. Community-based visual health education for the elderly has become a crucial intervention. With the advancement of technology, the application of extended reality (XR), such as virtual reality (VR) and augmented reality (AR), in health education has become more popular.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
1Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona; and.
Objective: Mixed-reality (MR) applications provide opportunities for technical rehearsal, education, and estimation of surgical performance without the risk of patient harm. In this study, the authors provide a structured literature review on the current state of MR applications and their effects on neurosurgery training. They also introduce an MR prototype for neurosurgical spine training.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!