Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Despite their high energy densities, Li- and Mn-rich, layered-layered, LiMnO·(1 - )LiTMO (TM = Ni, Mn, Co) (LMR-NMC) cathodes require further development in order to overcome issues related to bulk and surface instabilities such as Mn dissolution, impedance rise, and voltage fade. One promising strategy to modify LMR-NMC properties has been the incorporation of spinel-type, local domains to create "layered-layered-spinel" cathodes. However, precise control of local structure and composition, as well as subsequent characterization of such materials, is challenging and elucidating structure-property relationships is not trivial. Therefore, detailed studies of atomic structures within these materials are still critical to their development. Herein, aberration corrected-scanning transmission electron microscopy (AC-STEM) is utilized to study atomic structures, prior to and subsequent to electrochemical cycling, of LMR-NMC materials having integrated spinel-type components. The results demonstrate that strained grain boundaries with various atomic configurations, including spinel-type structures, can exist. These high energy boundaries appear to induce cracking and promote dissolution of Mn by increasing the contact surface area to electrolyte as well as migration of Ni during cycling, thereby accelerating performance degradation. These results present insights into the important role that local structures can play in the macroscopic degradation of the cathode structures and reiterate the complexity of how synthesis and composition affect structure-electrochemical property relationships of advanced cathode designs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.9b04620 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!