Introduction: Pulse crops are nutritious and therefore widely grown. Pulse seed coats are typically discarded, despite their high content of polyphenols that are known for their antioxidant properties and health benefits. A better understanding of polyphenol diversity and biochemical pathways will ultimately provide insight into how polyphenols are linked to health benefits, which will help to better utilise these seed coats.

Objectives: To explore polyphenol profiles among seed coats of diverse genotypes of five pulse crops using a targeted liquid chromatography mass spectrometry (LC-MS) method.

Methods: Four genotypes of each of common bean, chickpea, pea, lentil and faba bean seed coats were selected for analysis. Following extraction, polyphenols were quantified using LC-MS.

Results: An LC-MS method was developed to quantify 98 polyphenols from 13 different classes in 30 min. The low-tannin seed coats had the lowest concentrations of all polyphenols. Chickpea and pea seed coats had the most similar polyphenolic profiles. The black common bean showed the most diverse seed coat polyphenol profile, including several anthocyanins not detected in any of the other seed coats.

Conclusion: The LC-MS method reported herein was used to show polyphenol diversity within several polyphenol classes among the pulse crop seed coats. Detected in all seed coats, flavonols and hydroxybenzoic acids appear well-conserved in the edible Fabaceae. The presence of anthocyanins, flavan-3-ols and proanthocyanins in the coloured seed coats suggests that unique divergent branches were introduced in the flavonoid biosynthetic pathway, possibly in response to environmental stressors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/pca.2909DOI Listing

Publication Analysis

Top Keywords

seed coats
36
seed
12
pulse crops
12
coats
9
polyphenol profile
8
health benefits
8
polyphenol diversity
8
common bean
8
chickpea pea
8
lc-ms method
8

Similar Publications

Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.

View Article and Find Full Text PDF

The seed coat plays a pivotal role in seed development and germination, acting as a protective barrier and mediating interac-tions with the external environment. Traditional histochemical techniques and analytical methods have provided valuable insights into seed coat composition and function. However, these methods often suffer from limitations such as indirect chemical signatures and lack of spatial resolution.

View Article and Find Full Text PDF

Pomegranate ATP-binding cassette transporter PgABCG9 plays a negative regulatory role in lignin accumulation.

Int J Biol Macromol

December 2024

Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China. Electronic address:

Seed hardness is an important quality characteristic of pomegranate fruit. The development of seed hardness relies on the deposition of lignin in the inner seed coat, but the underlying molecular mechanisms remain unclear. In this study, we identified a member of ABCG transporters, PgABCG9, which may function in seed hardening by negatively regulating lignin biosynthesis.

View Article and Find Full Text PDF

Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.

View Article and Find Full Text PDF

ATP-binding cassette G23 is required for Arabidopsis seed coat suberization.

Plant Sci

December 2024

Department of Life Science, Sogang University, Seoul 04107, Republic of Korea. Electronic address:

Suberin is an extracellular hydrophobic polymer deposited in seed coats that acts as a barrier to regulate the movement of ions, water, and gases, and protects seeds against pathogens. However, the molecular mechanisms underlying suberin deposition in the seed coat remain unknown. In this study, the in planta role of ATP-binding cassette G23 (ABCG23) was investigated in the Arabidopsis seed coat.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!