A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrafast Single-Molecule Fluorescence Measured by Femtosecond Double-Pulse Excitation Photon Antibunching. | LitMetric

Most measurements of fluorescence lifetimes on the single-molecule level are carried out using avalanche photon diodes (APDs). These single-photon counters are inherently slow, and their response shows a strong dependence on photon energy, which can make reconvolution of the instrument response function (IRF) challenging. An ultrafast time resolution in single-molecule fluorescence is crucial, e.g., in determining donor lifetimes in donor-acceptor couples which undergo energy transfer, or in plasmonic antenna structures, where the radiative rate and non-radiative rates are enhanced. We introduce a femtosecond double-excitation (FeDEx) photon correlation technique, which measures the degree of photon antibunching as a function of time delay between two excitation pulses. In this boxcar integration, the time resolution of fluorescence transients is limited solely by the laser pulse length and is independent of the detector IRF. The versatility of the technique is demonstrated with a custom-made donor-acceptor complex with one donor and two acceptors and with single dye molecules positioned accurately between two gold nanoparticles using DNA origami. The latter structures show ∼75-fold radiative-rate enhancement and fluorescence lifetimes down to 19 ps, which is measured without the need for any reconvolution. With the potential of measuring subpicosecond fluorescence lifetimes, plasmonic antenna structures can now be optimized further.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b04354DOI Listing

Publication Analysis

Top Keywords

fluorescence lifetimes
12
single-molecule fluorescence
8
photon antibunching
8
time resolution
8
plasmonic antenna
8
antenna structures
8
fluorescence
6
photon
5
ultrafast single-molecule
4
fluorescence measured
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!