Microfluidic droplet sorting enables the high-throughput screening and selection of water-in-oil microreactors at speeds and volumes unparalleled by traditional well-plate approaches. Most such systems sort using fluorescent reporters on modified substrates or reactions that are rarely industrially relevant. We describe a microfluidic system for high-throughput sorting of nanoliter droplets based on direct detection using electrospray ionization mass spectrometry (ESI-MS). Droplets are split, one portion is analyzed by ESI-MS, and the second portion is sorted based on the MS result. Throughput of 0.7 samples s is achieved with 98 % accuracy using a self-correcting and adaptive sorting algorithm. We use the system to screen ≈15 000 samples in 6 h and demonstrate its utility by sorting 25 nL droplets containing transaminase expressed in vitro. Label-free ESI-MS droplet screening expands the toolbox for droplet detection and recovery, improving the applicability of droplet sorting to protein engineering, drug discovery, and diagnostic workflows.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201913203 | DOI Listing |
Biosens Bioelectron
January 2025
Department of Electronic, Electrical and Systems Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK; School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK; School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia. Electronic address:
Closed-channel microfluidic systems offer versatile on-chip capabilities for bioanalysis but often face complex fabrication and operational challenges. In contrast, free-boundary off-chip microfluidic platforms are relatively simple to fabricate and operate but lack the ability to perform complex tasks such as on-demand single-target sorting and encapsulation. To address these challenges, we develop an off-chip platform powered by a fluorescent-activated mechanical droplet sorting and production (FAM-DSP) system.
View Article and Find Full Text PDFEpilepsia
January 2025
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.
Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA.
We present here a passive and label-free droplet microfluidic platform to sort cells stepwise by lactate and proton secretion from glycolysis. A technology developed in our lab, Sorting by Interfacial Tension (SIFT), sorts droplets containing single cells into two populations based on pH by using interfacial tension. Cellular glycolysis lowers the pH of droplets through proton secretion, enabling passive selection based on interfacial tension and hence single-cell glycolysis.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China.
Microfluidic droplets, with their unique properties and broad applications, are essential in in chemical, biological, and materials synthesis research. Despite the flourishing studies on artificial intelligence-accelerated microfluidics, most research efforts have focused on the upstream design phase of microfluidic systems. Generating user-desired microfluidic droplets still remains laborious, inefficient, and time-consuming.
View Article and Find Full Text PDFSci Rep
December 2024
College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China.
VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!