In Vivo Expression of Genetic Information from Phosphoramidate-DNA.

Chembiochem

KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Herestraat 49, Box 1041, 3000, Leuven, Belgium.

Published: January 2020

Chemically modified genes and genomes with customized properties will become a valuable tool in numerous fields, including synthetic biology, biotechnology, and medicine. These genetic materials are meant to store and exchange information with DNA and RNA while tuning their functionality. Herein, we outline the development of an alternative genetic system carrying phosphoramidate linkages that successfully propagates genetic information in bacteria and at the same time is labile to acidic conditions. The P3'→N5' phosphoramidate-containing DNA (PN-DNA) was enzymatically synthesized by using 5'-amino-2',5'-deoxycytidine 5'-N-triphosphates (NH-dCTPs) as substrates for DNA polymerases and employed to encode antibiotic resistance in Escherichia coli. The resulting PN-DNA can be efficiently destroyed by mild acidic conditions, whereas an unmodified counterpart remains intact. A cloning strategy was proposed for assembling modified fragments into a genome. This method can be of interest to scientists working in the field of orthogonal nucleic acid genes and genomes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbic.201900712DOI Listing

Publication Analysis

Top Keywords

genes genomes
8
acidic conditions
8
vivo expression
4
genetic
4
expression genetic
4
genetic phosphoramidate-dna
4
phosphoramidate-dna chemically
4
chemically modified
4
modified genes
4
genomes customized
4

Similar Publications

The interaction of bacteria and harmonine in harlequin ladybird confers an interspecies competitive edge.

Proc Natl Acad Sci U S A

January 2025

Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

Metabolic enhancement contributed by horizontal gene transfer is essential for dietary specialization in leaf beetles.

Proc Natl Acad Sci U S A

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.

Horizontal gene transfer (HGT) from bacteria to insects is widely reported and often associated with the adaptation and diversification of insects. However, compelling evidence demonstrating how HGT-conferred metabolic adjustments enable species to adapt to surrounding environment remains scarce. Dietary specialization is an important ecological strategy adopted by animals to reduce inter- and intraspecific competition for limited resources.

View Article and Find Full Text PDF

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Purpose: We aimed to identify the transcriptomic signatures of soft tissue sarcoma (STS) related to radioresistance and establish a model to predict radioresistance.

Materials And Methods: Nine STS cell lines were cultured. Adenosine triphosphate-based viability was determined 5 days after irradiation with 8 Gy of X-rays in a single fraction.

View Article and Find Full Text PDF

Genome-wide association mapping of bruchid resistance loci in soybean.

PLoS One

January 2025

Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.

Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!