Brachypodium and plant viruses: entwined tools for discovery.

New Phytol

Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, USA.

Published: September 2020

In just a decade, Brachypodium distachyon (Brachypodium) has fulfilled its initial promise as a key tool for realizing new strategies for understanding host and pathogen biology during virus infections of the Poaceae. For this Tansley Insight, I have identified four areas - from the laboratory to the field - that may be particularly fruitful to explore, with a particular focus on Brachypodium-virus infections. These focus areas include: mechanisms of RNA modification of host plants and viruses; coevolution of virus-host interactions; viruses as tools of discovery; and how to explicate the complex outcomes during multivirus infections. Here, I broadly frame our current knowledge of Brachypodium-virus interactions and how these findings may inform virus studies of grasses in the laboratory, field and natural settings.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.16388DOI Listing

Publication Analysis

Top Keywords

tools discovery
8
laboratory field
8
brachypodium plant
4
plant viruses
4
viruses entwined
4
entwined tools
4
discovery decade
4
decade brachypodium
4
brachypodium distachyon
4
distachyon brachypodium
4

Similar Publications

Microbiome analysis has become a crucial tool for basic and translational research due to its potential for translation into clinical practice. However, there is ongoing controversy regarding the comparability of different bioinformatic analysis platforms and a lack of recognized standards, which might have an impact on the translational potential of results. This study investigates how the performance of different microbiome analysis platforms impacts the final results of mucosal microbiome signatures.

View Article and Find Full Text PDF

Methods are needed to mitigate microplastic (MP) pollution to minimize their harm to the environment and human health. Given the ability of polypeptides to adsorb strongly to materials of micro- or nanometer size, plastic-binding peptides (PBPs) could help create bio-based tools for detecting, filtering, or degrading MNP pollution. However, the development of such tools is prevented by the lack of PBPs.

View Article and Find Full Text PDF

Automation transformed various aspects of our human civilization, revolutionizing industries and streamlining processes. In the domain of scientific inquiry, automated approaches emerged as powerful tools, holding promise for accelerating discovery, enhancing reproducibility, and overcoming the traditional impediments to scientific progress. This article evaluates the scope of automation within scientific practice and assesses recent approaches.

View Article and Find Full Text PDF

The flexibility and programmability of CRISPR-Cas technology have made it one of the most popular tools for biomarker diagnostics and gene regulation. Especially, the CRISPR-Cas12 system has shown exceptional clinical diagnosis and gene editing capabilities. Here, we discovered that although the top loop of the 5' handle of guide RNA can undergo central splitting, deactivating CRISPR-Cas12a, the segments can dramatically restore CRISPR function through nucleic acid self-assembly or interactions with small molecules and aptamers.

View Article and Find Full Text PDF

Mechanical forces are critical for virtually all fundamental biological processes, yet quantification of mechanical forces at the molecular scale remains challenging. Here, we present a new strategy using calibrated coiled-coils as genetically encoded, compact, tunable, and modular mechano-sensors to substantially simplify force measurement , via diverse readouts (luminescence, fluorescence and analytical biochemistry) and instrumentation readily available in biology labs. We demonstrate the broad applicability and ease-of-use of these coiled-coil mechano-sensors by measuring forces during cytokinesis (formin Cdc12) and endocytosis (epsin Ent1) in yeast, force distributions in nematode axons (β-spectrin UNC-70), and forces transmitted to the nucleus (mini-nesprin-2G) and within focal adhesions (vinculin) in mammalian cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!