A simple and robust tool for spatio-temporal overlap of THz and XUV pulses in in-vacuum pump-probe experiments is presented. The technique exploits ultrafast changes of the optical properties in semiconductors (i.e. silicon) driven by ultrashort XUV pulses that are probed by THz pulses. This work demonstrates that this tool can be used for a large range of XUV fluences that are significantly lower than when probing by visible and near-infrared pulses. This tool is mainly targeted at emerging X-ray free-electron laser facilities, but can be utilized also at table-top high-harmonics sources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927515 | PMC |
http://dx.doi.org/10.1107/S1600577519014164 | DOI Listing |
Evol Appl
January 2025
Organisms and Environment, School of Biosciences and Water Research Institute Cardiff University Wales UK.
Conservation efforts are leading to demographic growth and spatial expansion of some previously endangered species. However, past population bottlenecks or population size fluctuations can have lasting effects on effective population size ( ), even when census size ( ) appears large or recovered. The UK metapopulation of Eurasian otters () has a well-documented history of population recovery over recent decades, with indicators of presence (faeces and footprints) increasing in distribution and number over successive national surveys.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Computer Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia.
Traffic flow prediction is a pivotal element in Intelligent Transportation Systems (ITSs) that provides significant opportunities for real-world applications. Capturing complex and dynamic spatio-temporal patterns within traffic data remains a significant challenge for traffic flow prediction. Different approaches to effectively modeling complex spatio-temporal correlations within traffic data have been proposed.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas, nº 135, Porto, 4050 - 600, Portugal.
Background: The incidence of mosquito-borne infections has increased worldwide. Mainland Portugal's characteristics might favour the (re)emergence of mosquito-borne diseases. This study aimed to characterize the spatial distribution of vectors and notification rates of imported cases of mosquito-borne infections in mainland Portugal and demarcate the areas where these geographies overlap.
View Article and Find Full Text PDFSci Rep
January 2025
Wildlife Institute of India, Dehradun, 248001, Uttarakhand, India.
Intra-specific interactions among top carnivores are among the most intriguing behavioural aspects and essential components of population dynamics. Static interactions pertain to space use, while dynamic interactions involve spatio-temporal patterns influenced by social structure, distribution, mate selection, and density. Previous studies have focused on static interactions, successfully estimating spatial overlap but leading to a knowledge gap of dynamic interaction to be able to compute attraction and avoidance on similar spatio-temporal scales.
View Article and Find Full Text PDFSci Rep
December 2024
Centre for Forest Research & Centre for Northern Studies, Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, QC, Canada.
The pressure on ecosystems resulting from outdoor recreational activities is increasing globally. Protected areas offer to large mammals refugia free of hunting with greater access to food resources, but the presence of humans for recreation in these areas may induce changes in behaviour, activity pattern, and habitat use. We used camera traps to model the spatial distribution and temporal activity of the white-tailed deer (Odocoileus virginianus) in a nature reserve located close to Montreal, the second largest metropole in Canada.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!