Dual-phase xenon detectors lead the search for keV-scale nuclear recoil signals expected from the scattering of weakly interacting massive particle (WIMP) dark matter, and can potentially be used to study the coherent nuclear scattering of MeV-scale neutrinos. New capabilities of such experiments can be enabled by extending their nuclear recoil searches down to the lowest measurable energy. The response of the liquid xenon target medium to nuclear recoils, however, is not well characterized below a few keV, leading to large uncertainties in projected sensitivities. In this work, we report a new measurement of ionization signals from nuclear recoils in liquid xenon down to the lowest energy reported to date. At 0.3 keV, we find that the average recoil produces approximately one ionization electron; this is the first measurement of nuclear recoil signals at the single-ionization-electron level, approaching the physical limit of liquid xenon ionization detectors. We discuss the implications of these measurements on the physics reach of xenon detectors for nuclear-recoil-based WIMP dark matter searches and the detection of coherent elastic neutrino-nucleus scattering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.231106 | DOI Listing |
Phys Rev Lett
November 2024
Physics Department, University of Patras, Patras, Greece.
Hypothetical axions provide a compelling explanation for dark matter and could be emitted from the hot solar interior. The CERN Axion Solar Telescope has been searching for solar axions via their back conversion to x-ray photons in a 9-T 10-m long magnet directed toward the Sun. We report on an extended run with the International Axion Observatory pathfinder detector, doubling the previous exposure time.
View Article and Find Full Text PDFPhys Rev Lett
November 2024
Department of Physics, University of California San Diego, La Jolla, California 92093, USA.
Phys Rev Lett
November 2024
School of Physics and Astronomy, Shanghai Jiao Tong University, Key Laboratory for Particle Astrophysics and Cosmology (MoE), Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai 200240, China.
Phys Rev Lett
September 2024
New Cornerstone Science Laboratory, Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China.
Eur Phys J C Part Fields
August 2024
Physics Department, Columbia University, New York, NY 10027 USA.
The multi-staged XENON program at INFN Laboratori Nazionali del Gran Sasso aims to detect dark matter with two-phase liquid xenon time projection chambers of increasing size and sensitivity. The XENONnT experiment is the latest detector in the program, planned to be an upgrade of its predecessor XENON1T. It features an active target of 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!