We study the nature of the phase diagram of three-dimensional lattice models in the presence of non-Abelian gauge symmetries. In particular, we consider a paradigmatic model for the Higgs mechanism, lattice scalar chromodynamics with N_{f} flavors, characterized by a non-Abelian SU(N_{c}) gauge symmetry. For N_{f}≥2 (multiflavor case), it presents two phases separated by a transition line where a gauge-invariant order parameter condenses, being associated with the breaking of the residual global symmetry after gauging. The nature of the phase transition line is discussed within two field-theoretical approaches, the continuum scalar chromodynamics, and the Landau-Ginzburg-Wilson (LGW) Φ^{4} approach based on a gauge-invariant order parameter. Their predictions are compared with simulation results for N_{f}=2, 3 and N_{c}=2-4. The LGW approach turns out to provide the correct picture of the critical behavior at the transitions between the two phases.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.232002DOI Listing

Publication Analysis

Top Keywords

scalar chromodynamics
12
phase diagram
8
critical behavior
8
three-dimensional lattice
8
nature phase
8
gauge-invariant order
8
order parameter
8
diagram symmetry
4
symmetry breaking
4
breaking critical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!