SNX-BAR proteins are an evolutionarily conserved class of membrane remodeling proteins that play key roles in sorting and trafficking of protein and lipids during endocytosis, sorting within the endosomal system, and autophagy. Central to SNX-BAR protein function is the ability to form homodimers or heterodimers that bind membranes using highly conserved phox-homology (PX) and BAR (Bin/Amphiphysin/Rvs) domains. In addition, oligomerization of SNX-BAR dimers on membranes can elicit the formation of membrane tubules and vesicles and this activity is thought to reflect their functions as coat proteins for endosome-derived transport carriers. Researchers have long utilized in vitro binding studies using recombinant SNX-BAR proteins on synthetic liposomes or giant unilamellar vesicles (GUVs) to reveal the precise makeup of lipids needed to drive membrane remodeling, thus revealing their mechanism of action. However, due to technical challenges with dual expression systems, toxicity of SNX-BAR protein expression in bacteria, and poor solubility of individual SNX-BAR proteins, most studies to date have examined SNX-BAR homodimers, including non-physiological dimers that form during expression in bacteria. Recently, we have optimized a protocol to overcome the major shortcomings of a typical bacterial expression system. Using this workflow, we demonstrate how to successfully express and purify large amounts of SNX-BAR heterodimers and how to reconstitute them on synthetic liposomes for binding and tubulation assays.

Download full-text PDF

Source
http://dx.doi.org/10.3791/60413DOI Listing

Publication Analysis

Top Keywords

snx-bar proteins
12
snx-bar
9
snx-bar heterodimers
8
membrane remodeling
8
snx-bar protein
8
synthetic liposomes
8
expression bacteria
8
expression
5
proteins
5
expression purification
4

Similar Publications

SNX27:Retromer:ESCPE-1-mediated early endosomal tubulation impacts cytomegalovirus replication.

Front Cell Infect Microbiol

October 2024

Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.

Introduction: Cytomegaloviruses (CMVs) extensively reorganize the membrane system of the cell and establish a new structure as large as the cell nucleus called the assembly compartment (AC). Our previous studies on murine CMV (MCMV)-infected fibroblasts indicated that the inner part of the AC contains rearranged early endosomes, recycling endosomes, endosomal recycling compartments and trans-Golgi membrane structures that are extensively tubulated, including the expansion and retention of tubular Rab10 elements. An essential process that initiates Rab10-associated tubulation is cargo sorting and retrieval mediated by SNX27, Retromer, and ESCPE-1 (endosomal SNX-BAR sorting complex for promoting exit 1) complexes.

View Article and Find Full Text PDF

The Entamoeba histolytica Vps26 (EhVps26) retromeric protein is involved in phagocytosis: Bioinformatic and experimental approaches.

PLoS One

August 2024

Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Ciudad de México, México.

The retromer is a cellular structure that recruits and recycles proteins inside the cell. In mammalian and yeast, the retromer components have been widely studied, but very little in parasites. In yeast, it is formed by a SNX-BAR membrane remodeling heterodimer and the cargo selecting complex (CSC), composed by three proteins.

View Article and Find Full Text PDF

SNX32 Regulates Sorting and Trafficking of Activated EGFR to the Lysosomal Degradation Pathway.

Traffic

July 2024

State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.

SNX32 is a member of the evolutionarily conserved Phox (PX) homology domain- and Bin/Amphiphysin/Rvs (BAR) domain- containing sorting nexin (SNX-BAR) family of proteins, which play important roles in sorting and membrane trafficking of endosomal cargoes. Although SNX32 shares the highest amino acid sequence homology with SNX6, and has been believed to function redundantly with SNX5 and SNX6 in retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), its role(s) in intracellular protein trafficking remains largely unexplored. Here, we report that it functions in parallel with SNX1 in mediating epidermal growth factor (EGF)-stimulated postendocytic trafficking of the epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

A peptide derived from sorting nexin 1 inhibits HPV16 entry, retrograde trafficking, and L2 membrane spanning.

Tumour Virus Res

December 2024

Department of Immunobiology, University of Arizona, Tucson, AZ, USA; Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ, USA; Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA. Electronic address:

High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis.

View Article and Find Full Text PDF

High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!