High-resolution X-ray pair distribution functions for molten and glassy TeO reveal coordination numbers ≈ 4. However, distinct from the known α-, β-, and γ-TeO polymorphs, there is considerable short-range disorder such that no clear cutoff distance between bonded and nonbonded interactions exists. We suggest that this is similar to disorder in δ-TeO and arises from a broad distribution of asymmetric Te-O-Te bridges, something that we observe becomes increasingly asymmetric with increasing liquid temperature. Such behavior is qualitatively consistent with existing interpretations of Raman scattering spectra, and equivalent to temperature-induced coordination number reduction, for sufficiently large cutoff radii. Therefore, TeO contains a distribution of local environments that are, furthermore, temperature dependent, making it distinct from the canonical single-oxide glass formers. Our results are in good agreement with high-level cluster calculations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b03231 | DOI Listing |
J Food Sci Technol
January 2025
Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (UNICAMP), Monteiro Lobato 80, 6121, Campinas, SP 3083-862 Brazil.
Unlabelled: The effects of high hydrostatic pressure (HHP) (400-650 MPa) and holding temperature (25-50 °C) in thermally assisted HHP processing on multi-scale structure of starch (granule, crystalline and molecular), techno-functional properties, and digestibility of sorghum starch (SS) were evaluated. Response surface methodology has verified that the process impact on the modification of SS was dependent primarily on the pressure level. As HHP increased, processed SS progressively lost their granular structure and Maltese cross, indicating gradual structural disorder within the granules.
View Article and Find Full Text PDFNature
January 2025
Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Glioblastoma (GBM) infiltrates the brain and can be synaptically innervated by neurons, which drives tumor progression. Synaptic inputs onto GBM cells identified so far are largely short-range and glutamatergic. The extent of GBM integration into the brain-wide neuronal circuitry remains unclear.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering, University of Napoli Parthenope, Centro Direzionale, 80143 Napoli, Italy.
In the context of neurodegenerative diseases, finger tapping is a gold-standard test used by clinicians to evaluate the severity of the condition. The finger tapping test involves repetitive tapping between the index finger and thumb. Subjects affected by neurodegenerative diseases, such as Parkinson's disease, often exhibit symptoms like bradykinesia, rigidity, and tremor.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Interfaces, Confinement, Matériaux et Nanostructures, 45071 Orléans Cedex 2, France.
Magnesium aluminates (MgO)(AlO) belong to a class of refractory materials with important applications in glass and glass-ceramic technologies. Typically, these materials are fabricated from high-temperature molten phases. However, due to the difficulties in making measurements at very high temperatures, information on liquid-state structure and properties is limited.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
Spin glass (SG), in which the spins are glassy, has attracted broad attention for theoretical study and prospective application. SG states are generally related to disordered or frustrated spin systems, which are usually observed in inorganic magnets. Herein, supramolecular magnetic ionic liquid (TMTBDI[FeCl]) self-assemblies are prepared by solution self-assembly via hydrophobic and π-π stacking interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!