Zn=Zn double bonded-especially double-π bonded-systems are scarce due to strong Coulomb repulsion caused by the Zn atom's internally crowded d electrons and very high energy of the virtual π orbitals in Zn fragments. It is also rare for Zn atoms to exhibit negative oxidation states within reported Zn-Zn bonded complexes. Herein, we report Zn=Zn double-π bonded octahedral clusters Zn M (M=Li, Na) bridged by four alkali metal ligands, in which the central Zn atom is in a negative oxidation state. Especially in D -Zn Na , the natural population analysis shows that the charge of the Zn atom reaches up to -0.89 |e| (-1.11 |e| for AIM charge). Although this cooperation inevitably increases the repulsion between two Zn atoms, the introduction of the s -type ligands results in occupation of degenerated π orbitals and the electrons being delocalized over the whole octahedral framework as well, in turn stabilizing the octahedral molecular structure. This study demonstrates that maintaining the degeneracy of the π orbitals and introducing electrons from equatorial plane are effective means to construct double-π bonds between transitional metals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.201901051 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!