OPTIMIZATION OF THE RADIOACTIVE AEROSOL SAMPLING AND MEASURING PROCEDURE WITH RESPECT TO RADON CONCENTRATION IN THE AIR.

Radiat Prot Dosimetry

NUVIA a.s., Modřínová 1094, 674 01 Třebíč, Třebíč, Czech Republic.

Published: December 2019

High-volume aerosol samplers combined with laboratory analysis using high-resolution gamma ray spectrometry allow determining artificial radionuclides in the atmosphere at sub μBq/m3 levels. A major drawback of this procedure is a significant delay of the analysis result after any potential radioactive contamination deposition on the aerosol filter. Within the scope of the HAMRAD project, an autonomous device was developed in order to increase the sampling and measuring frequency. This approach yields higher detection limits (minimum detectable activity concentration [MDAC]) due to the deposited activity of radon decay products on the filter. In order to quantify the radon effect, a simple mathematical model was developed to predict MDAC for the particular radionuclide of interest for the given background conditions. It was found that MDAC can vary by a factor of ~2 for typical 'radon' conditions (~10 Bq/m3) at SÚRO Prague and by a factor up to 5 for high radon concentration (100 Bq/m3).

Download full-text PDF

Source
http://dx.doi.org/10.1093/rpd/ncz218DOI Listing

Publication Analysis

Top Keywords

sampling measuring
8
radon concentration
8
optimization radioactive
4
radioactive aerosol
4
aerosol sampling
4
measuring procedure
4
procedure respect
4
radon
4
respect radon
4
concentration air
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!