In this work, biologically significant 3,3-di(indolyl)indolin-2-ones have been synthesized using a silica-coated magnetic-nanoparticle-supported 1,4-diazabicyclo[2.2.2]octane (DABCO)-derived and acid-functionalized ionic liquid as the catalytic entity. The fabricated nanocomposite catalyzes the pseudo-three-component reaction of isatins and indoles explicitly via hydrogen-bonding interactions between substrates and the catalyst. The nanocatalytic system utilizes water as the green reaction medium to obtain a library of indolinones in good to excellent yields under mild reaction conditions. Besides, the catalyst could be easily recovered from the reaction mixture through simple external magnetic forces, which enables excellent recyclability of the catalyst for successive runs without appreciable loss in catalytic activity. Hence, the outcomes of the present methodology make the nanocatalyst a potential candidate for the development of green and sustainable chemical processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921616PMC
http://dx.doi.org/10.1021/acsomega.9b03237DOI Listing

Publication Analysis

Top Keywords

silica-coated magnetic-nanoparticle-supported
8
ionic liquid
8
magnetic-nanoparticle-supported dabco-derived
4
dabco-derived acidic
4
acidic ionic
4
liquid efficient
4
efficient synthesis
4
synthesis bioactive
4
bioactive 33-diindolylindolin-2-ones
4
33-diindolylindolin-2-ones work
4

Similar Publications

Silica-Coated Magnetic-Nanoparticle-Supported DABCO-Derived Acidic Ionic Liquid for the Efficient Synthesis of Bioactive 3,3-Di(indolyl)indolin-2-ones.

ACS Omega

December 2019

Green Chemistry Network Centre, Department of Chemistry and Department of Chemistry, Hindu College, University of Delhi, Delhi 110007, India.

In this work, biologically significant 3,3-di(indolyl)indolin-2-ones have been synthesized using a silica-coated magnetic-nanoparticle-supported 1,4-diazabicyclo[2.2.2]octane (DABCO)-derived and acid-functionalized ionic liquid as the catalytic entity.

View Article and Find Full Text PDF

Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles.

J Biotechnol

October 2013

National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

Efficient dynamic interactions among cofactor, enzymes and substrate molecules are of primary importance for multi-step enzymatic reactions with in situ cofactor regeneration. Here we showed for the first time that the above dynamic interactions could be significantly intensified by exerting an external alternating magnetic field on magnetic nanoparticles-supported multi-enzymatic system so that the inter-particle collisions due to Brownian motion of nanoparticles could be improved. To that end, a multienzyme system including glutamate dehydrogenase (GluDH), glucose dehydrogenase (GDH) and cofactor NAD(H) were separately immobilized on silica coated Fe3O4 magnetic nanoparticles with an average diameter of 105 nm, and the effect of magnetic field strength and frequency on the kinetics of the coupled bi-enzyme reaction was investigated.

View Article and Find Full Text PDF

Dodecyl benzenesulfonic acid functionalized silica-coated magnetic nanoparticles (γ-Fe2O3@SiO2-DDBSA) were readily prepared and identified as an efficient catalyst for the synthesis of a library of spirooxindole-pyrimidine derivatives by three-component condensation reaction of barbituric acids, isatins and cyclohexane-1,3-diones. The aqueous reaction medium, easy recovery of the catalyst using an external magnet, and high yields make the protocol sustainable and economic.

View Article and Find Full Text PDF

A novel magnetically recoverable organic hydride compound was successfully constructed by using silica-coated magnetic nanoparticles as a support. An as-prepared magnetic organic hydride compound, BNAH (1-benzyl-1,4-dihydronicotinamide), showed efficient activity in the catalytic reduction of α,β-epoxy ketones. After reaction, the magnetic nanoparticle-supported BNAH can be separated by simple magnetic separation which made the separation of the product easier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!