A serine endopeptidase was characterized as a major inactivating enzyme for endogenous cholecystokinin (CCK) in brain. CCK-8 released by depolarization of slices of rat cerebral cortex, as measured by its immunoreactivity (CCK-ir), undergoes extensive degradation (approximately 85% of the amount released) before reaching the incubation medium. However, recovery of CCK-ir is enhanced up to 3-fold in the presence of serine-alkylating reagents (i.e., phenylmethylsulfonyl fluoride) as well as selected active site-directed inactivators (i.e., peptide chloromethyl ketones) or transition-state inhibitors (i.e., peptide boronic acids) of serine peptidases. Among these compounds, elastase inhibitors were the most potent protecting agents, whereas trypsin or chymotrypsin inhibitors were ineffective. HPLC analysis of endogenous CCK-ir recovered in media of depolarized slices indicated that endogenous CCK-5 [CCK-(29-33)-pentapeptide] was the most abundant fragment and that its formation was strongly decreased in the presence of an elastase inhibitor. HPLC analysis of fragments formed upon incubation of exogenous CCK-8 [CCK-(26-33)-octapeptide] with brain slices showed CCK-5, Gly-Trp-Met, and Trp-Met to be major metabolites of CCK-8 whose formation was prevented or at least diminished in the presence of the elastase inhibitor. It is concluded that there is an elastase-like serine endopeptidase in brain that cleaves the two peptide bonds of CCK-8 where the carboxyl group is donated by a methionine residue and constitutes a major inactivation ectoenzyme for the neuropeptide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC282422 | PMC |
http://dx.doi.org/10.1073/pnas.85.21.8326 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!