The objective of this work is to characterize two types of bovine collagen (fibre and powder), evaluating its application in mixed hamburger formulations, as well as the quality characteristics of the products. The collagen fibre had a fibrillar structure, molecular mass 100 kDa and greater gel strength (146 315 Pa) and protein content (97.81%) than the powdered collagen, which had molecular mass from 50 to 100 kDa, greater hydroxyproline content, and a morphological structure with spherical microparticles more amorphous than the collagen fibre. In this study we found that the addition of 1.5% powdered collagen and 2.5% flocculated soybean flour and/or 0.75% powdered collagen and 3.5% flocculated soybean flour did not deteriorate the technological properties or the sensory attributes of hamburgers. The use of collagen is a promising alternative, since it has functional properties, improves the texture characteristics of a product, and is of low cost.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6902288PMC
http://dx.doi.org/10.17113/ftb.57.03.19.5896DOI Listing

Publication Analysis

Top Keywords

collagen fibre
12
powdered collagen
12
molecular mass
8
mass 100
8
100 kda
8
kda greater
8
flocculated soybean
8
soybean flour
8
collagen
7
structural techno-functional
4

Similar Publications

Tissue Engineering Construct for Articular Cartilage Restoration with Stromal Cells from Synovium vs. Dental Pulp-A Pre-Clinical Study.

Pharmaceutics

December 2024

Sports Medicine Division, Institute of Orthopedics and Traumatology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05403-010, SP, Brazil.

Background/objectives: Cartilage injuries and osteoarthritis are prevalent public health problems, due to their disabling nature and economic impact. Mesenchymal stromal cells (MSCs) isolated from different tissues have the immunomodulatory capacity to regulate local joint environment. This translational study aims to compare cartilage restoration from MSCs from the synovial membrane (SM) and dental pulp (DP) by a tissue-engineered construct with Good Manufacturing Practices.

View Article and Find Full Text PDF

(1) Background: Collagen, a natural polymer, is widely used in the fabrication of membranes for guided bone regeneration (GBR). These membranes are sourced from various tissues, such as skin, pericardium, peritoneum, and tendons, which exhibit differences in regenerative outcomes. Therefore, this study aimed to evaluate the morphological and chemical properties of porcine collagen membranes from five different tissue sources: skin, pericardium, dermis, tendons, and peritoneum.

View Article and Find Full Text PDF

: Cyclophosphamide (CP) is widely used for treating various cancers and autoimmune diseases, but it causes damage to reproductive organs due to oxidative stress (OS) and inflammation. Boric acid (BA) has antioxidant properties that may help reduce OS, which is critical for preserving uterine functionality, particularly for cancer patients considering pregnancy after cryopreservation. This study aimed to determine whether BA could diminish CP-induced toxicity in the uterus and fallopian tubes (FT) using CP-induced toxicity in a rat model.

View Article and Find Full Text PDF

The complex collagen network of the native meniscus and the gradient of the density and alignment of this network through the meniscal enthesis is essential for the proper mechanical function of these tissues. This architecture is difficult to recapitulate in tissue-engineered replacement strategies. Prenatally, the organization of the collagen fiber network is established and aggrecan content is minimal.

View Article and Find Full Text PDF

Long-Term Histological Evaluation of a Novel Dermal Template in the Treatment of Pediatric Burns.

Bioengineering (Basel)

December 2024

Paediatric Burn Center, Children's Skin Center, Department of Surgery, University Children's Hospital Zurich, Lenggstrasse 30, 8008 Zurich, Switzerland.

For pediatric patients with full-thickness burns, achieving adequate dermal regeneration is essential to prevent inelastic scars that may hinder growth. Traditional autologous split-thickness skin grafts alone often fail to restore the dermal layer adequately. This study evaluates the long-term effect of using a NovoSorb Biodegradable Temporizing Matrix (BTM) as a dermal scaffold in four pediatric patients, promoting dermal formation before autografting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!