Extracellular vesicles (ECVs) are secreted cell-derived membrane particles involved in intercellular signaling and cell-cell communication. By transporting various bio-macromolecules, ECVs and in particular exosomes are relevant in various (patho-) physiological processes. ECVs are also released by cancer cells and can confer pro-tumorigenic effects. Their target cell tropism, effects on proliferation rates, natural stability in blood and immunotolerance makes ECVs particularly interesting as delivery vehicles. Polyethylenimines (PEIs) are linear or branched polymers which are capable of forming non-covalent complexes with small RNA molecules including siRNAs or antimiRs, for their delivery in vitro and in vivo. This study explores for the first time the combination of PEI-based nanoparticles with naturally occurring ECVs from different cell lines, for the delivery of small RNAs. ECV-modified PEI/siRNA complexes are analyzed by electron microscopy vs. ECV or complex alone. On the functional side, we demonstrate increased knockdown efficacy and storage stability of PEI/siRNA complexes upon their modification with ECVs. This is paralleled by enhanced tumor cell-inhibition by ECV-modified PEI/siRNA complexes targeting Survivin. Pre-treatment with various inhibitors of cellular internalization reveals alterations in cellular uptake mechanisms and biological activities of PEI/siRNA complexes upon their ECV modification. Extending our studies towards PEI-complexed antimiRs against miR-155 or miR-1246, dose-dependent cellular and molecular effects are enhanced in ECV-modified complexes, based on the de-repression of direct miRNA target genes. Differences between ECVs from different cell lines are observed regarding their capacity of enhancing PEI/siRNA efficacies, independent of the target cell line for transfection. Finally, an in vivo therapy study in mice bearing s.c. PC3 prostate carcinoma xenografts reveals marked inhibition of tumor growth upon treatment with ECV-modified PEI/siSurvivin complexes, based on profound target gene knockdown. We conclude that ECV-modification enhances the activity of PEI-based complexes, by altering pivotal physicochemical and biological nanoparticle properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2019.12.032 | DOI Listing |
Biomed Mater
January 2024
Department of Minimally Invasive Interventional Radiology, Guangzhou Panyu Central Hospital, Medical Imaging Institute of Panyu District, Guangzhou 511400, People's Republic of China.
Atherosclerosis is a chronic inflammatory disease characterized by the accumulation of cholesterol within the arterial wall. Its progression can be monitored via magnetic resonance imaging (MRI). Ultrasmall Superparamagnetic Particles of Iron Oxide (USPIO) (<5 nm) have been employed as T1 contrast agents for MRI applications.
View Article and Find Full Text PDFRegen Ther
March 2024
Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, D-45117 Essen, Germany.
J Gene Med
June 2022
Faculty of Pharmacy and Pharmaceutical Sciences, U. of Alberta, Edmonton, AB, Canada.
Introduction: Breast cancer continues to be one of the leading causes of death in women, and the lack of treatment options for distant metastasis warrants the need to identify and develop more effective approaches. The aim of this study was to identify and validate targets that are associated with the survival and migration of the breast cancer cells in vitro through RNA interference (RNAi) approach.
Methods: Linoleic-acid-modified polyethylenimine (PEI) polymer was used to screen a short interfering RNA (siRNA) library against numerous cell adhesion and cytoskeleton genes in MDA-MB-231 triple-negative breast cell line, and the functional outcome of silencing was determined by growth and migration inhibition with further target validation studies.
Pharm Res
June 2022
University of South Australia, Clinical and Health Sciences, Adelaide, South Australia, 5000, Australia.
Purpose: Cationic polymers have many advantages as vectors for mediated cellular entry and delivery of siRNA. However, toxicity related to their cationic charge has compromised clinical use. It is hypothesized that the siRNA-vector complex composition and properties can be controlled to optimize therapeutic performance.
View Article and Find Full Text PDFTissue Eng Part A
March 2022
Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!