Aims: There is a pancreatic islet adaptation in obese subjects, resulting in insulin resistance and diabetes type 2. We studied the effect of intermittent fasting (IntF) on the islet structure of diet-induced obese (DIO) mice.
Methods: Three-month-old male mice fed a control diet (C, 10% Kcal fat) or a high-fat diet (HF, 50% Kcal fat) for two months (n = 20 each group). Then, half of each group did IntF (alternating 24 h fed/24 h fast), continuing in their diets four more weeks: C, C-IntF, HF, HF-IntF. Islets were prepared to microscopy or isolated for molecular analysis.
Results: HF group (vs. C group) showed hyperglycemia, hyperinsulinemia, hyperleptinemia, hypoadiponectinemia, glucose intolerance, insulin resistance, and islet hypertrophy with a consequent higher both the alpha-cell and beta-cell masses. In the HF group (vs. C), there was low PDX1 (pancreatic and duodenal homeobox 1), and IntF did not alter PDX1. There was a low p-AKT/AKT ratio (protein kinase B), and IntF enhanced it. Also, tumor suppressor p53 was increased, and IntF decreased it. IL (interleukin) -6 was higher in the HF group (vs. C), and HF-IntF (vs. C-IntF). Any significant change in NFkB was seen among groups.
Conclusions: IntF improves pancreatic islet structure in DIO mice, even with continued HF diet intake, primarily considering on the alpha- and beta-cell masses regulation, then improving insulin signaling and decreasing cell apoptosis. Future research should explore whether the shortening of the IntF extend could maintain the benefits observed in the long term.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdiacomp.2019.107497 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!