A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Selective peak inference: Unbiased estimation of raw and standardized effect size at local maxima. | LitMetric

Selective peak inference: Unbiased estimation of raw and standardized effect size at local maxima.

Neuroimage

Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuro-sciences, University of Oxford, Oxford, OX3 9DU, UK; Department of Statistics, University of Warwick, Coventry, CV4 7AL, UK.

Published: April 2020

The spatial signals in neuroimaging mass univariate analyses can be characterized in a number of ways, but one widely used approach is peak inference: the identification of peaks in the image. Peak locations and magnitudes provide a useful summary of activation and are routinely reported, however, the magnitudes reflect selection bias as these points have both survived a threshold and are local maxima. In this paper we propose the use of resampling methods to estimate and correct this bias in order to estimate both the raw units change as well as standardized effect size measured with Cohen's d and partial R. We evaluate our method with a massive open dataset, and discuss how the corrected estimates can be used to perform power analyses. Keywords: fMRI, selective inference, winner's curse, regression to the mean, bias, bootstrap, local maxima, UK biobank, power analyses, massive linear modeling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2019.116375DOI Listing

Publication Analysis

Top Keywords

local maxima
12
peak inference
8
standardized size
8
power analyses
8
selective peak
4
inference unbiased
4
unbiased estimation
4
estimation raw
4
raw standardized
4
size local
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!