A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing the drug ontology with semantically-rich representations of National Drug Codes and RxNorm unique concept identifiers. | LitMetric

Enhancing the drug ontology with semantically-rich representations of National Drug Codes and RxNorm unique concept identifiers.

BMC Bioinformatics

Department of Health Outcomes & Biomedical Informatics, University of Florida, Gainesville, Florida, USA.

Published: December 2019

Background: The Drug Ontology (DrOn) is a modular, extensible ontology of drug products, their ingredients, and their biological activity created to enable comparative effectiveness and health services researchers to query National Drug Codes (NDCs) that represent products by ingredient, by molecular disposition, by therapeutic disposition, and by physiological effect (e.g., diuretic). It is based on the RxNorm drug terminology maintained by the U.S. National Library of Medicine, and on the Chemical Entities of Biological Interest ontology. Both national drug codes (NDCs) and RxNorm unique concept identifiers (RXCUIS) can undergo changes over time that can obfuscate their meaning when these identifiers occur in historic data. We present a new approach to modeling these entities within DrOn that will allow users of DrOn working with historic prescription data to more easily and correctly interpret that data.

Results: We have implemented a full accounting of national drug codes and RxNorm unique concept identifiers as information content entities, and of the processes involved in managing their creation and changes. This includes an OWL file that implements and defines the classes necessary to model these entities. A separate file contains an instance-level prototype in OWL that demonstrates the feasibility of this approach to representing NDCs and RXCUIs and the processes of managing them by retrieving and representing several individual NDCs, both active and inactive, and the RXCUIs to which they are connected. We also demonstrate how historic information about these identifiers in DrOn can be easily retrieved using a simple SPARQL query.

Conclusions: An accurate model of how these identifiers operate in reality is a valuable addition to DrOn that enhances its usefulness as a knowledge management resource for working with historic data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6927112PMC
http://dx.doi.org/10.1186/s12859-019-3192-8DOI Listing

Publication Analysis

Top Keywords

national drug
16
drug codes
16
rxnorm unique
12
unique concept
12
concept identifiers
12
drug ontology
8
codes rxnorm
8
codes ndcs
8
historic data
8
working historic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!