Hollow and Yolk-Shell Co-N-C@SiO Nanoreactors: Controllable Synthesis with High Selectivity and Activity for Nitroarene Hydrogenation.

ACS Appl Mater Interfaces

Beijing Key Laboratory of Green Reaction Engineering and Technology, Department of Chemical Engineering , Tsinghua University, Beijing 100084 , China.

Published: January 2020

The use of hollow and yolk-shell nanocomposites is an effective route to enhance catalytic performance. A strategy that allows precise control of the nanocomposites was developed to synthesize novel hollow and yolk-shell SiO nanoreactors of Co-N-C@SiO, which used ZIF-67 as the hard template and also as the source for active sites. A size dependence of the nanoreactor structure was observed. Large size of ZIF-67 gave yolk-shell Y-Co-N-C@SiO while small size of crystals gave hollow H-Co-N-C@SiO. The hydrogenation reaction results showed that the Co-N-C@SiO catalyst exhibited a high selectivity (>99%) to aniline and gave an activity (35.3 h) ∼3.3 times higher than that of Co/SiO (11.8 h). The excellent performance was attributed to that Co nanoparticles were doped in the N-C framework where they formed Co-N species and that the HSN had a void structure that had a reduced diffusion limitation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.9b19364DOI Listing

Publication Analysis

Top Keywords

hollow yolk-shell
12
high selectivity
8
hollow
4
yolk-shell co-n-c@sio
4
co-n-c@sio nanoreactors
4
nanoreactors controllable
4
controllable synthesis
4
synthesis high
4
selectivity activity
4
activity nitroarene
4

Similar Publications

Internal Nanocavity Regulation of Embedded Rare Earth Up-Conversion Nanoparticles for HO Production Operable at Up to 780 nm.

Small

January 2025

XJTU-Oxford International Joint Laboratory for Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.

Semiconductor photocatalysts embedded with rare earth upconversion nanoparticles (REUPs) are a promising strategy to improve their photoresponse range, but their photocatalytic performance within the near-infrared (NIR) region is far from satisfactory. Here, a method is reported to improve the photocatalytic activity by adjusting the nanocavity of upconversion nanoparticles inside a semiconductor. Two types of CdS embedded with NaYF:Yb,Er photocatalysts with core-shell structure (no cavity) (NYE/CdS) and yolk-shell structure (empty cavity) (NYE@CdS) are synthesized by different methods.

View Article and Find Full Text PDF

Catalytic Hydrolysis of Perfluorinated Compounds in a Yolk-Shell Micro-Reactor.

Adv Sci (Weinh)

January 2025

Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China.

Perfluorinated compounds (PFCs) are emerging environmental pollutants characterized by their extreme stability and resistance to degradation. Among them, tetrafluoromethane (CF) is the simplest and most abundant PFC in the atmosphere. However, the highest C─F bond energy and its highly symmetrical structure make it particularly challenging to decompose.

View Article and Find Full Text PDF

The efficient utilization of light and the prolonged lifetime of photo-induced charge carriers are essential elements that contribute to superior photocatalytic activity. Yolk-shell nanostructures with porous shells and mobile cores offer significant structural advantages in achieving these goals. However, designing yolk-shell multicomponent nanocomposites with diverse architectures remains a persistent challenge.

View Article and Find Full Text PDF

Spatial confinement growth of high-performance persistent luminescence nanoparticles for image-guided sonodynamic therapy.

Acta Biomater

January 2025

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China; Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen 361021, PR China; Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, PR China. Electronic address:

Near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have significant potential in diagnostic and therapeutic applications owing to their unique persistent luminescence (PersL). However, obtaining high-performance NIR PLNPs remains challenging because of the limitations of current synthesis methods. Herein, we introduce a spatial confinement growth strategy for synthesizing high-performance NIR PLNPs using hollow mesoporous silica (hmSiO).

View Article and Find Full Text PDF

Developing electrochemical energy storage and conversion systems, such as capacitors, batteries, and fuel cells is crucial to address rapidly growing global energy demands and environmental concerns for a sustainable society. Significant efforts have been devoted to the structural design and engineering of various electrode materials to improve economic applicability and electrochemical performance. The yolk-shell structures represent a special kind of core-shell morphologies, which show great application potential in energy storage, controlled delivery, adsorption, nanoreactors, sensing, and catalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!