Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The genetic manipulation of basidiomycete mushrooms is notoriously difficult and immature, and there is a lack of research reports on clustered regularly interspaced short palindromic repeat (CRISPR) based gene editing of functional genes in mushrooms. In this work, Ganoderma lucidum, a famous traditional medicinal basidiomycete mushroom, which produces a type of unique triterpenoid-anti-tumor ganoderic acids (GAs), was used, and a CRISPR/CRISPR-associated protein-9 nuclease (Cas9) editing system for functional genes of GA biosynthesis was constructed in the mushroom. As proof of concept, the effect of different gRNA constructs with endogenous u6 promoter and self-cleaving ribozyme HDV on ura3 disruption efficiency was investigated at first. The established system was applied to edit a cytochrome P450 monooxygenase (CYP450) gene cyp5150l8, which is responsible for a three-step biotransformation of lanosterol at C-26 to ganoderic acid 3-hydroxy-lanosta-8, 24-dien-26 oic acid. As a result, precisely edited cyp5150l8 disruptants were obtained after sequencing confirmation. The fermentation products of the wild type (WT) and cyp5150l8 disruptant were analyzed, and a significant decrease in the titer of four identified GAs was found in the mutant compared to WT. Another CYP gene involved in the biosynthesis of squalene-type triterpenoid 2, 3; 22, 23-squalene dioxide, cyp505d13, was also disrupted using the established CRISPR-Cas9 based gene editing platform of G. lucidum. The work will be helpful to strain molecular breeding and biotechnological applications of G. lucidum and other basidiomycete mushrooms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-019-10298-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!