Groundwater resources are the main supply of freshwater for human activities. However, in the last fifty years aquifers have become more susceptible to chemical pollution due to human activities. The concept of groundwater vulnerability constitutes a worldwide accepted tool for water protection and planning. However, the existing methods and modified versions do not account for all the hydrogeochemical processes that drive anthropogenic pollution. The hydrogeochemical processes occurring within an aquifer can be determined using multivariate statistical analysis. In this study a specific vulnerability method named SVAP (Specific Vulnerability to Anthropogenic Pollution) is proposed. The index is based on seven quantitative parameters: depth to groundwater, recharge, nitrate losses, hydraulic resistance of the vadose zone, aquifer thickness, hydraulic conductivity of the aquifer, and slope. Weights of anthropogenic factors were determined by factor analysis and used to validate the SVAP methodology. The parameters' classification was selected according to the highest Pearson's correlation coefficient with factor weights and then grouped via a linear combination. The new index was applied in two watersheds: the Florina basin (Greece) and the Garigliano River basin (Italy), both of which possess complex hydrogeochemical regimes. The main hydrogeochemical processes acting in the study areas were identified via factor analysis, which revealed that the anthropogenic pollution in both sites was due mainly to chemical fertilizers and manure. Verification of the SVAP method produced correlation coefficients with nitrate concentrations of 0.75 and 0.62 in Florina and Garigliano, respectively. The proposed SVAP method is more reliable and flexible than standard vulnerability assessment methods and can be easily adapted for complex aquifers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2019.115386 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!