In this work, we report on the structure and dynamics of the 1,1,3,3 tetramethyl guanidine (TMG) aqueous solutions in a wide concentration and temperature range by combining vibrational and ultrasonic spectroscopies. The experimental Raman spectra have been compared with the corresponding spectra obtained by ab initio quantum mechanical and density functional theory electronic structure calculations. This comparison indicated that only a single mechanism occurs when dissolving TMG in water and this is the proton transfer reaction, while the formation of byproducts during hydrolysis of TMG is dubious. This observation is further supported by the concentration dependence of the Raman spectra. The analysis of the ultrasonic relaxation data also revealed that the system exhibits a single relaxation process associated with this proton transfer reaction. It has been also observed that both relaxation amplitude and frequency exhibit a clear monotonous increase with increasing amine concentration in the solutions supporting the concept of the proton transfer reaction. The corresponding activation enthalpy was estimated directly from the temperature dependence of the acoustic data and found equal to ΔH* = 5.56 ± 0.34 kcal/mol, which seems to be reasonable for hydrogen-bond formation. Furthermore, the concentration dependence of the acoustic parameters and kinematic viscosity data has been used as a probe for the molecular association in these solutions. The results have been discussed in relation to the ability or inability of water molecules to form stable clathrates after the addition of amine molecules in the solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117958 | DOI Listing |
Catal Sci Technol
January 2025
Department of Chemistry and Chemical Biology, Stevens Institute of Technology 1 Castle Point Terrace Hoboken NJ 07030 USA
Engineered heme proteins possess excellent biocatalytic carbene N-H insertion abilities for sustainable synthesis, and most of them have His as the Fe axial ligand. However, information on the basic reaction mechanisms is limited, and ground states of heme carbenes involved in the prior computational mechanistic studies are under debate. A comprehensive quantum chemical reaction pathway study was performed for the heme model with a His analogue as the axial ligand and carbene from the widely used precursor ethyl diazoacetate with aniline as the substrate.
View Article and Find Full Text PDFHepat Oncol
December 2024
Advanced Imaging Research Center, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
The aim of this study was to assess the utility of weighted amide proton transfer (APT) MRI in three different rodent models of hepatocellular carcinoma (HCC). APT MRI was evaluated in models of diethylnitrosamine (DEN) induced HCC, N1S1 syngeneic orthotopic xenograft and human HepG2 ectopic xenograft. All models of HCC showed a higher APT signal over the surrounding normal tissues.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, South Korea.
Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.
View Article and Find Full Text PDFInorg Chem
January 2025
NUPOM Lab, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, U.K.
An understanding of proton transfer and migration at the surfaces of solid metal oxides and related molecular polyoxometalates (POMs) and metal alkoxides is crucial for the development of reactivity involving protonation or the absorption/binding of water. In this work, the hydrolysis of alkoxido Ti- and Sn-substituted Lindqvist [(MeO)MWO] (M = Ti, ; M = Sn, ) and Keggin [(MeO)MPWO] (M = Ti, ; M = Sn, ) type polyoxometalates (POMs) to hydroxido derivatives and subsequent condensation to μ-oxido species has been investigated in detail to provide insight into proton transfer reactions in these molecular metal oxide systems. Solution NMR studies revealed the dependence of reactions not only on the nature of the heteroatom (Ti or Sn) but also on the type of lacunary (W or PW) POM and also on the solvent (MeCN or DMSO).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
The electrochemical conversion of nitrate to ammonia is necessary to restore the globally perturbed nitrogen cycle. Herein, the regulated coordination of active Cu single atoms to selectively modulate the energy barriers of proton-electron transfer steps was investigated and offered valuable insights for improving the selectivity and kinetics of the NORR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!