ZnS quantum dots (QDs) and their core/shell (CdSe/ZnS) structures were studied for Zn based precursor reactivities. ZnS and CdSe/ZnS QDs were prepared selecting aqueous route and then characterized via XRD, TEM, EDX, PL, RAMAN and FTIR practices. Core/shell nanostructures were synthesized by taking dissimilar precursors for the shell formation. Photoluminescence spectra of prepared QDs corroborate the effectual luminescence. Prepared QDs have large surface area that make them useful alternative as organic antimicrobial agent which are highly irritant and unstable. Study of antimicrobial behavior of QD structures was carried out by disk diffusion method. Antimicrobial study of QDs and their core/shell structures was performed against gram negative and gram positive bacteria, E. coli, A. baumanni and Bacillus subtilis respectively. It is found that elemental composition and size of QDs plays important role in antimicrobial behavior. Prepared QDs are fluorescent and have a key role in complex microbial population studies and identification of bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2019.117962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!