Where does land use matter most? Contrasting land use effects on river quality at different spatial scales.

Sci Total Environ

Department of Biology, Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels 1050, Belgium; Centre for Environmental Management, University of the Free State, Mandela Drive, P.O. Box 339, 9300 Bloemfontein, South Africa.

Published: May 2020

Understanding the influence of land-use activities on river quality has been a key focus of river monitoring programs worldwide. However, defining which land-use spatial scale is relevant remains elusive. In this study, therefore, we contrasted the influence of land use on river quality using three types of land-use estimators, namely circular buffers around a monitoring site, circular buffers upstream of the monitoring site and the entire watershed area upstream of the monitoring site. The land-use percentage compositions within the Usa-Kikuletwa River catchment in northeastern Tanzania were quantified using Landsat-8 satellite images with a maximum mapping resolution of 30 m. Redundancy analysis models and generalized linear models were used to evaluate the influence of land use on macroinvertebrate assemblages and physico-chemical water quality at different spatial scales in the dry and wet seasons. Overall, a substantial fraction of variation in physico-chemical water quality, macroinvertebrate taxon richness, Chao-1 and TARISS (Tanzania River Scoring System) score could be explained by land use of the entire watershed area upstream of the monitoring site in the dry and wet seasons. However, macroinvertebrate abundances showed strong links with more local land-use patterns within 100 m and 2 km radii. Circular buffers upstream of monitoring sites were more informative for macroinvertebrate assemblages than circular buffers around the monitoring sites. However, the latter did correlate well with physico-chemical water quality variables. Land-use variables correlated across spatial scales (i.e., 100 m up to 2 km radii), but not with the land use in the entire watershed area above the monitoring site. Our results indicate that physico-chemical water quality variables and macroinvertebrates may respond differently to land-uses at different scales. More importantly, our results illustrate that the choice regarding spatial land-use metrics can bias conclusions of environmental impact studies in river systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.134825DOI Listing

Publication Analysis

Top Keywords

monitoring site
20
circular buffers
16
upstream monitoring
16
physico-chemical water
16
water quality
16
river quality
12
spatial scales
12
entire watershed
12
watershed area
12
quality spatial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!