A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First-principles investigation of electrochemical dissolution of Pt nanoparticles and kinetic simulation. | LitMetric

First-principles investigation of electrochemical dissolution of Pt nanoparticles and kinetic simulation.

J Chem Phys

Department of Chemical Physics, School of Chemistry and Materials Science, iCHeM, CAS Excellence Center for Nanoscience, University of Science and Technology of China, Hefei 230026, Anhui, China.

Published: December 2019

Dissolution is the primary route of Pt nanoparticle degradation in electrochemical devices, e.g., fuel cells. Investigation of potential-dependent dissolution kinetics of Pt nanoparticles is crucial to optimize the nanoparticle size and operating conditions for better performance. A mean-field kinetic theory under the steady-state approximation, combined with atomistic thermodynamics and Wulff construction, was developed to study the interplay between oxygen chemisorption, electrode potential, and particle size on the dissolution of Pt nanoparticles. We found that although oxygen chemisorption from electrode potential-induced water splitting can stabilize Pt nanoparticles through decreasing the surface energy and increasing the redox potential, the electrode potential plays a more decisive role in facilitating the dissolution of Pt nanoparticles. In comparison with the minor effect of oxygen chemisorption, an increase in the particle size, though reducing the dispersion, has a more significant effect on the suppression of the dissolution. These theoretical understandings on the effects of electrode potential and particle size on the dissolution are crucial for optimizing the nanoparticle size under oxidative operating conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5129631DOI Listing

Publication Analysis

Top Keywords

dissolution nanoparticles
12
oxygen chemisorption
12
electrode potential
12
particle size
12
nanoparticle size
8
operating conditions
8
chemisorption electrode
8
potential particle
8
size dissolution
8
dissolution
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!