Zinc oxide‑selenium heterojunction composite: Synthesis, characterization and photo-induced antibacterial activity under visible light irradiation.

J Photochem Photobiol B

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No. 15 East Road of North Third Ring, Chao Yang District, Beijing 100029, China.

Published: January 2020

The designing of new antibacterial agents with high and long-lasting activities are urgently needed in order to cope with the fast-emerging bacterial resistance. Zinc oxide nanoparticles (ZnO) have shown a significant promise as broad-spectrum antibacterial agents, and are efficient material in compromising bacterial membrane stability that leads to an increased cell permeability to nano-products. However, further engineering is required to improve their biological activities and to minimize their toxicity to healthy cells. In an attempt to resolve this issue, two semiconductor materials, ZnO and selenium (Se), were fabricated into a unique structural composite by a newly developed facile green method, and the designed composite was applied as an antibacterial nanomedicine. The developed methodology involves the initial preparation of ZnO, followed by its fabrication with Se at different temperatures (70 °C to 95 °C). Our experimental data showed that well defined interpenetrated crystalline Se network on ZnO (ZnO-Se) can be obtained at 80 °C for 180 min. The as-prepared ZnO-Se showed promising results in inhibiting the challenged bacterial strains under light irradiation (visible light) as compared to free ZnO. The enhanced biocidal property of ZnO-Se could be ascribed to its improved light-harvesting ability for sustainable induction of reactive oxygen species (ROS) and an active contact killing mechanism. Thus, ZnO-Se composite with a novel architecture could be a promising material in the treatment of bacterial infections by a mutual antibacterial synergy from the incorporated elements. Interestingly, the ZnO-Se has the ability to scavenge the overproduction of hydroxyl radicals, thus protecting the healthy cells from oxidative damage.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2019.111743DOI Listing

Publication Analysis

Top Keywords

visible light
8
light irradiation
8
antibacterial agents
8
healthy cells
8
antibacterial
5
zno
5
zno-se
5
zinc oxide‑selenium
4
oxide‑selenium heterojunction
4
composite
4

Similar Publications

Curdlan inclusion modifies the rheological properties and the helix-coil transition behavior of gelatin and increases the flexibility of gelatin films.

Food Chem

December 2024

College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; School of Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China; Shandong Ensign Industry Co., Ltd., Weifang, Shandong 262409, China. Electronic address:

Gelatin, a natural and edible polymer, has attracted wide attention for use in food and edible packaging applications. However, its inadequate properties, especially poor flexibility, limit its broader utilization. Hybridizing different polymers is a promising strategy to achieve enhanced properties.

View Article and Find Full Text PDF

Designing catalysts with well-defined active sites with chemical functionality responsive to visible light has significant potential for overcoming scaling relations limiting chemical reactions over heterogeneous catalyst surfaces. Visible light can be leveraged to facilitate the removal of strongly bound species from well-defined single cationic sites (Rh) under mild conditions (323 K) when they are incorporated within a photoactive perovskite oxide (Rh-doped SrTiO). CO, a key intermediate in many chemistries, forms stable geminal dicarbonyl Rh complexes (Rh(CO)), that could act as site blockers or poisons during a catalytic cycle.

View Article and Find Full Text PDF

Compartmentalizing Donor-Acceptor Stenhouse Adducts for Structure-Property Relationship Analysis.

J Am Chem Soc

December 2024

Department of Chemistry, Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089, United States.

The development of photoswitches that absorb low energy light is of notable interest due to the growing demand for smart materials and therapeutics necessitating benign stimuli. Donor-acceptor Stenhouse adducts (DASAs) are molecular photoswitches that respond to light in the visible to near-infrared spectrum. As a result of their modular assembly, DASAs can be modified at the donor, acceptor, triene, and backbone heteroatom molecular compartments for the tuning of optical and photoswitching properties.

View Article and Find Full Text PDF

With the applications of in situ X-ray diffraction (XRD), electrical - measurement, and ambient pressure hard X-ray photoelectron spectroscopy (AP-HAXPES), the characteristics of the topotactic phase transition of LaCoO (LCO) thin films are examined. XRD measurements show clear evidence of structural phase transition (SPT) of the LCO thin films from the perovskite (PV) LaCoO to the brownmillerite (BM) LaCoO phases through the intermediate LaCoO phase at a temperature of 350 °C under high-vacuum conditions, ∼10 mbar. The reverse SPT from BM to PV phases is also found under ambient pressure (>100 mbar) of air near 100 °C.

View Article and Find Full Text PDF

Construction of reusable fluorescent assembled 3D-printed hydrogen-based models to simulate minimally invasive resection of complex liver cancer.

PLoS One

December 2024

Department of General Surgery, Cancer center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang Province, China.

Complex liver cancer is often difficult to expose or dissect, and the surgery is often challenging. 3D-printed models may realistically present 3D anatomical structure, which has certain value in planning and training of liver surgery. However, the existing 3D-printed models are all monolithic models, which are difficult to reuse and limited in clinical application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!