The world emits over 14 gigatons of CO in excess of what can be remediated by natural processes annually, contributing to rising atmospheric CO levels and increasing global temperatures. The electrochemical reduction of CO (CO RR) to value-added chemicals and fuels has been proposed as a method for reusing these excess anthropogenic emissions. While state-of-the-art CO RR systems exhibit high current densities and faradaic efficiencies, research on long-term electrode durability, necessary for this technology to be implemented commercially, is lacking. Previous reviews have focused mainly on the CO electrolyzer performance without considering durability. In this Review, the need for research into high-performing and durable CO RR systems is stressed by summarizing the state-of-the-art with respect to durability. Various failure modes observed are also reported and a protocol for standard durability testing of CO RR systems is proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cssc.201902933DOI Listing

Publication Analysis

Top Keywords

electrochemical reduction
8
durable cathodes
4
cathodes electrolyzers
4
electrolyzers efficient
4
efficient aqueous
4
aqueous electrochemical
4
reduction emits
4
emits 14 gigatons
4
14 gigatons excess
4
excess remediated
4

Similar Publications

Design of a Co doped carbon Backbone with self-grown Au nanoparticles via a 'Triple Advantage' Strategy for sensitive dopamine detection.

J Colloid Interface Sci

January 2025

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:

In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).

View Article and Find Full Text PDF

High selectivity, capacity and stability for electrochemical lithium extraction on boron-doped HMnO by tailoring lattice constant and intercalation energy.

Water Res

January 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:

A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.

View Article and Find Full Text PDF

Herein, we present an efficient approach for developing electrochemical aptasensing interfaces, by "click" postfunctionalization of phenylethynyl-grafted glassy carbon substrates with mixed monolayers containing biorecognition elements and phosphorylcholine zwitterionic groups. Typically, controlling the composition of multicomponent surface layers by grafting from a mixture of aryldiazonium salts is challenging due to differences in their chemical reactivity. Our approach circumvents this issue by employing the electrochemical reduction of a single aryldiazonium salt containing a silyl-protected alkyne group followed by deprotection, to create phenylethynyl monolayers which can subsequently accommodate the concurrent immobilization of bioreceptors and zwitterionic groups through "click" postfunctionalization.

View Article and Find Full Text PDF

The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.

View Article and Find Full Text PDF

We study the influence of electrical biasing on the modification of the chemical composition and electrical performance of perovskite solar cells (PSCs) by coupling electrochemical impedance spectroscopy (EIS) and scanning transmission X-ray microscopy (STXM) techniques. EIS reveals the formation of charge accumulation at the interfaces and changes in the resistive and capacitive properties. STXM study on PSCs after applying a strong electric field for a long biasing time indicates the breakdown of methylammonium (MA) cation, promoting iodide ions to migrate and create defects at the interface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!